JAVASCRIPT
HANDBOOK

&

FLAVIO COPES

Preface

This book aims to introduce you to JavaScript, one of the most popular programming
languages.

It's a gentle introduction to the basic concepts of JavaScript, and assumes no prior
JavaScript knowledge, and no prior programming experience.

You'll learn the basic concepts in a very straightforward way, without too much jargon or
complicated explanations, using an 80/20 approach that gives you the mental models and
knowledge to start using JavaScript to build cool stuff.

After reading this book I'd recommend checking out the other books on Web Development

freely available on my website.

This book was last updated in late 2025.

Legal
Flavio Copes, 2025. All rights reserved.

Downloaded from flaviocopes.com.

No part of this book may be reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher.

The information in this book is for educational and informational purposes only and is not
intended as legal, financial, or other professional advice. The author and publisher make no
representations as to the accuracy, completeness, suitability, or validity of any information in
this book and will not be liable for any errors, omissions, or delays in this information or any
losses, injuries, or damages arising from its use.

This book is provided free of charge to the newsletter subscribers of Flavio Copes. It is for
personal use only. Redistribution, resale, or any commercial use of this book or any portion
of it is strictly prohibited without the prior written permission of the author.

If you wish to share a portion of this book, please provide proper attribution by crediting
Flavio Copes and including a link to flaviocopes.com.

Introduction to JavaScript

JavaScript is one of the most popular programming languages in the world.
| believe it's a great language to be your first programming language ever.

We mainly use JavaScript to create

https://flaviocopes.com/books/
https://flaviocopes.com/
http://flaviocopes.com/
af://h1-1
af://h1-2
af://h1-3

websites
web applications
server-side applications using Node.js

but JavaScript is not limited to these things, and it can also be used to

create mobile applications using tools like React Native
create programs for microcontrollers and the internet of things
create smartwatch applications

It can basically do anything. It's so popular that everything new that shows up is going to
have some kind of JavaScript integration at some point.

JavaScript is a programming language that is:

high level: it provides abstractions that allow you to ignore the details of the machine
where it's running on. It manages memory automatically with a garbage collector, so you
can focus on the code instead of managing memory like other languages like C would
need, and provides many constructs which allow you to deal with highly powerful
variables and objects.

dynamic: as opposed to static programming languages, a dynamic language executes
at runtime many of the things that a static language does at compile time. This has pros
and cons, and it gives us powerful features like dynamic typing, late binding, reflection,
functional programming, object runtime alteration, closures and much more. Don't worry
if those things are unknown to you - you'll know all of those at the end of the course.
dynamically typed: a variable does not enforce a type. You can reassign any type to a
variable, for example, assigning an integer to a variable that holds a string.

loosely typed: as opposed to strong typing, loosely (or weakly) typed languages do not
enforce the type of an object, allowing more flexibility but denying us type safety and
type checking (something that TypeScript - which builds on top of JavaScript - provides)
interpreted: it's commonly known as an interpreted language, which means that it does
not need a compilation stage before a program can run, as opposed to C, Java or Go for
example. In practice, browsers do compile JavaScript before executing it, for
performance reasons, but this is transparent to you: there is no additional step involved.
multi-paradigm: the language does not enforce any particular programming paradigm,
unlike Java for example, which forces the use of object-oriented programming, or C
which forces imperative programming. You can write JavaScript using an object-oriented
paradigm, using prototypes and the new (as of ES6) classes syntax. You can write
JavaScript in a functional programming style, with its first-class functions, or even in an
imperative style (C-like).

In case you're wondering, JavaScript has nothing to do with Java, it's a poor name choice
but we have to live with it.

A little bit of history

Created in 1995, JavaScript has gone a very long way since its humble beginnings.

It was the first scripting language that was supported natively by web browsers, and thanks
to this it gained a competitive advantage over any other language and today it's still the only
scripting language that we can use to build Web Applications.

Other languages exist, but all must compile to JavaScript - or more recently to
WebAssembly, but this is another story.

In the beginning, JavaScript was not nearly as powerful as it is today, and it was mainly used
for fancy animations and the marvel known at the time as Dynamic HTML.

With the growing needs that the web platform demanded (and continues to demand),
JavaScript had the responsibility to grow as well, to accommodate the needs of one of the
most widely used ecosystems of the world.

JavaScript is now widely used also outside of the browser. The rise of Node.js in the last few
years unlocked backend development, once the domain of Java, Ruby, Python, PHP and
more traditional server-side languages.

JavaScript is now also the language powering databases and many more applications, and

it's even possible to develop embedded applications, mobile apps, TV sets apps and much

more. What started as a tiny language inside the browser is now the most popular language
in the world.

Just JavaScript
Sometimes it's hard to separate JavaScript from the features of the environment it is used in.

For example, the console.log() line you can find in many code examples is not
JavaScript. Instead, it's part of the vast library of APIs provided to us in the browser.
In the same way, on the server, it can be sometimes hard to separate the JavaScript
language features from the APIs provided by Node.js.

Is a particular feature provided by React or Vue? Or is it "plain JavaScript", or "vanilla
JavaScript" as often called?

In this book | talk about JavaScript, the language, without complicating your learning process
with things that are outside of it, and provided by external ecosystems.

A brief intro to the syntax of JavaScript

In this little introduction | want to tell you about 5 concepts:

white space

af://h1-4
af://h1-5
af://h1-6

case sensitivity
literals
identifiers
comments

White space

JavaScript does not consider white space meaningful. Spaces and line breaks can be added
in any fashion you might like, even though this is in theory.

In practice, you will most likely keep a well-defined style and adhere to what people
commonly use, and enforce this using a linter or a style tool such as Prettier.

For example, | like to always use 2 characters to indent.

Case sensitive
JavaScript is case sensitive. A variable named something is different from Something.

The same goes for any identifier.

Literals

We define as literal a value that is written in the source code, for example, a number, a
string, a boolean or also more advanced constructs, like Object Literals or Array Literals:

5

'Test'
true

['a', 'b']

{color: 'red', shape: 'Rectangle'}

Identifiers

An identifier is a sequence of characters that can be used to identify a variable, a function,

or an object. It can start with a letter, the dollar sign $ or an underscore and it can

contain digits. Using Unicode, a letter can be any allowed char, for example, an emoji & .

Test
test
TEST
_test
Testl
$test

af://h2-7
af://h2-8
af://h2-9
af://h2-10

The dollar sign is commonly used to reference DOM elements.

Some names are reserved for JavaScript internal use, and we can't use them as identifiers.

Comments

Comments are one of the most important parts of any program. In any programming
language. They are important because they let us annotate the code and add important
information that otherwise would not be available to other people (or ourselves) reading the
code.

In JavaScript, we can write a comment on a single line using // . Everything after // is not
considered as code by the JavaScript interpreter.

Like this:

true

Another type of comment is a multi-line comment. It starts with /x and ends with x/ .

Everything in between is not considered as code:

Semicolons

Every line in a JavaScript program is optionally terminated using semicolons.

| said optionally, because the JavaScript interpreter is smart enough to introduce semicolons
for you.

In most cases, you can omit semicolons altogether from your programs.

This fact is very controversial, and you'll always find code that uses semicolons and code
that does not.

My personal preference is to always avoid semicolons unless strictly necessary.

Values

af://h2-11
af://h1-12
af://h1-13

A hello string is a value.
A number like 12 is a value.

hello and 12 are values. string and number are the types of those values.

The type is the kind of value, its category. We have many different types in JavaScript, and
we'll talk about them in detail later on. Each type has its own characteristics.

When we need to have a reference to a value, we assign it to a variable.
The variable can have a name, and the value is what's stored in a variable, so we can later
access that value through the variable name.

Variables

A variable is a value assigned to an identifier, so you can reference and use it later in the
program.

This is because JavaScript is loosely typed, a concept you'll frequently hear about.
A variable must be declared before you can use it.

We have 2 main ways to declare variables. The first is to use const:
const a = 0

The second way is to use let:
let a = 0

What's the difference?

const defines a constant reference to a value. This means the reference cannot be
changed. You cannot reassign a new value to it.

Using let you can assign a new value to it.

For example, you cannot do this:

const a =0
a =1

Because you'll get an error: TypeError: Assignment to constant variable. .

On the other hand, you can do it using let :

af://h1-14

let a =0
a =1

const does not mean "constant" in the way some other languages like C mean. In
particular, it does not mean the value cannot change - it means it cannot be reassigned. If
the variable points to an object or an array (we'll see more about objects and arrays later)
the content of the object or the array can freely change.

Const variables must be initialized at the declaration time:
const a =0
but let values can be initialized later:

let a
a==o

You can declare multiple variables at once in the same statement:

const a =1, b =2
letc=1, d =2

But you cannot redeclare the same variable more than one time:

let a
let a

1 1
N

or you'd get a "duplicate declaration" error.

My advice is to always use const and only use let when you know you'll need to reassign
a value to that variable. Why? Because the less power our code has, the better. If we know a
value cannot be reassigned, it's one less source for bugs.

Now that we saw how to work with const and let, | want to mention var .

Until 2015, var was the only way we could declare a variable in JavaScript. Today, a
modern codebase will most likely just use const and let . There are some fundamental
differences which | detail in this post but if you're just starting out, you might not care about
them. Just use const and let.

Types

Variables in JavaScript do not have any type attached.

https://flaviocopes.com/javascript-difference-let-var/
af://h1-15

They are untyped.

Once you assign a value with some type to a variable, you can later reassign the variable to
host a value of any other type, without any issue.

In JavaScript we have 2 main kinds of types: primitive types and object types.

Primitive types
Primitive types are

numbers
strings
booleans
symbols

And two special types: null and undefined .

Object types

Any value that's not of a primitive type (a string, a number, a boolean, null or undefined) is an
object.

Object types have properties and also have methods that can act on those properties.

We'll talk more about objects later on.

Expressions

An expression is a single unit of JavaScript code that the JavaScript engine can evaluate,
and return a value.

Expressions can vary in complexity.

We start from the very simple ones, called primary expressions:

2

0.02
'something’
true

false

this
undefined

i

af://h2-16
af://h2-17
af://h1-18

Arithmetic expressions are expressions that take a variable and an operator (more on
operators soon), and result into a number:

1/ 2
i++
i-=2

ix 2
String expressions are expressions that result into a string:
‘A" + 'string'
Logical expressions make use of logical operators and resolve to a boolean value:

a & b
a ||l b
'a

More advanced expressions involve objects, functions, and arrays, and I'll introduce them
later.

Operators

Operators allow you to get two simple expressions and combine them to form a more
complex expression.

We can classify operators based on the operands they work with. Some operators work with
1 operand. Most with 2 operands. Just one operator works with 3 operands.

In this first introduction to operators, we'll introduce the operators you are most likely familiar

with: binary operators.

| already introduced one when talking about variables: the assignment operator =. You use
= to assign a value to a variable:

let b =2

Let's now introduce another set of binary operators that you are already familiar with, from
basic math.

The addition operator (+)

af://h1-19
af://h2-20

const three =1 + 2
const four = three + 1

The + operator also serves as string concatenation if you use strings, so pay attention:

const three =1 + 2
three + 1
'"three' + 1

The subtraction operator (-)

const two = 4 - 2

The division operator (/)

Returns the quotient of the first operator and the second:

const result 20 / 5

const result 20 /7

If you divide by zero, JavaScript does not raise any error but returns the Infinity value (or
-Infinity if the numerator is negative).

1/0
-1/ 0

The remainder operator (%)

The remainder is a very useful calculation in many use cases:

const result = 20 % 5
const result = 20 % 7

A remainder by zero is always NaN , a special value that means "Not a Number":

af://h2-21
af://h2-22
af://h2-23

The multiplication operator (*)

Multiply two numbers

1 x 2
1 x =2

The exponentiation operator (**)

Raise the first operand to the power of the second operand

k)
k)
k)
k)

coO NN N N B
N 0O N -~ N

k)

Precedence rules

Every complex statement with multiple operators in the same line will introduce precedence
problems.

Take this example:

o®

const a=1%x2+ ((5/ 2) 2)

The result is 2.5, but why?
What operations are executed first, and which need to wait?

Some operations have more precedence than the others. The precedence rules are listed in
this table:

Operator Description
* / % multiplication/division
+ - addition/subtraction

= assignment

Operations on the same level (like + and -) are executed in the order they are found, from
left to right.

Following these rules, the operation above can be solved in this way:

af://h2-24
af://h2-25
af://h1-26

leta=1x%x2+ ((5/2)%2)
a=2+ ((5/2)%2)

a=2+ (2.5 % 2)

a=2+ 0.5

a = 2.5

Comparison operators

After assignment and math operators, the third set of operators | want to introduce is
comparison operators.

You can use the following operators to compare two numbers, or two strings.
Comparison operators always return a boolean, a value that's true or false).
Those are relational comparison operators:

< means "less than"
<= means "less than, or equal to"
> means "greater than"

>= means "greater than, or equal to"

Example:

const a = 2

a>=1

In addition to those, we have 4 equality operators. They accept two values, and return a
boolean:

=== checks for strict equality

== checks for strict inequality

== checks for loose equality (performs type coercion)
I= checks for loose inequality (performs type coercion)

With == and !=, JavaScript may convert the values to the same type before comparing
them. This can lead to surprising results:

'5' == 5

0 == false
'""==10

null == undefined
NaN == NaN

af://h1-27

In conditionals, values are first coerced to a boolean. These are the falsy values:

false
0, -0, on (BigInt zero)
"' (empty string)

null, undefined

NaN

Everything else is truthy (including [1, {}, '0',and 'false'). Prefer ===/ !== to avoid
the implicit conversions of ==/ !=.

Prefer === and !'== to avoid unexpected type coercion.

Conditionals

With the comparison operators in place, we can talk about conditionals.

An if statement is used to make the program take a route, or another, depending on the
result of an expression evaluation.

This is the simplest example, which always executes:

if (true) {

on the contrary, this is never executed:

if (false) {

The conditional checks the expression you pass to it for a true or false value. If you pass a
number, that always evaluates to true unless it's 0. If you pass a string, it always evaluates to
true unless it's an empty string. Those are general rules of casting types to a boolean.

Did you notice the curly braces? That is called a block, and it is used to group a list of
different statements.

A block can be put wherever you can have a single statement. And if you have a single
statement to execute after the conditionals, you can omit the block, and just write the
statement:

if (true) ()

af://h1-28

But | always like to use curly braces to be more clear.

Else
You can provide a second part to the if statement: else.

You attach a statement that is going to be executed if the if condition is false:

if (true) {
T else {
}

Since else accepts a statement, you can nest another if/else statement inside it:

if (a === true) {

} else if (b === true) {
} else {

}

Arrays

An array is a collection of elements.

Arrays in JavaScript are not a type on their own.
Arrays are objects.

We can initialize an empty array in this way:
const a = []

You can pre-fill the array using this syntax:

[1, 2, 3]
(1, 2, 3)

const a

const a

An array can hold any value, even values of different types:

af://h2-29
af://h1-30

const a = [1, 'Flavio', ['a', 'b']]

Since we can add an array into an array, we can create multi-dimensional arrays, which have
very useful applications (e.g. a matrix):

const matrix = [

[1' 2' 3]’
[4' 5' 6]’
[7' 8' 9]’

matrix[0] [0]
matrix[2][0]

You can access any element of the array by referencing its index, which starts from zero:

alo]
all]
al2]

You can initialize a new array with a set of values using this syntax that uses the Array
built-in object, which first initializes an array of 12 elements, and fills each element with the
® number:

(12). (0)

You can get the number of elements in the array by checking its length property:

const a = [1, 2, 3]
a.

Note that you can set the length of the array. If you assign a bigger number than the array's
current capacity, nothing happens. If you assign a smaller number, the array is cut at that
position:

const a = [1, 2, 3]
a

a. =2

a

We can add an element at the end of an array using the push() method:

a. (4)

We can add an element at the beginning of an array using the unshift() method:

a. (0)
a. (-2, -1)

We can remove an item from the end of an array using the pop() method:

a. ()

We can remove an item from the beginning of an array using the shift() method:

a. ()

You can join multiple arrays by using the concat() method:

const a = [1, 2]
const b = [3, 4]
a. (b)

const ¢
a
b

You can also use the spread operator (...) in this way:

const a = [1, 2]
const b = [3, 4]
const c=[...a, ...Db]

€

You can use the find() method to find a specific item in the array:

a. ((element, index, array) => {

})

This method returns the first item that returns true in the callback function provided. It
returns undefined if nothing returns "true".

It's your responsibility to define the body of the callback function, so you can tell find()
what you're looking for.

A commonly used syntax is:
const my_id = 3
a. ((x) => x. === my_id)

The above line will return the first element in the array that has id equal to 3, the value of
my_id .

findIndex() is another array method that works similarly to find() , but returns the index
of the first item that returns true, and if not found, it returns -1 :

a. ((element, index, array) => {
})

Another useful method is includes() :
a. (value)

Returns true if a contains value .

Strings
A string is a sequence of characters.

It can also be defined as a string literal, which is enclosed in single or double quotes:

'A string’
"Another string'

| personally prefer single quotes all the time, and use double quotes only in HTML to define
attributes.

You assign a string value to a variable like this:
const name = 'Flavio'
You can determine the length of a string using its length property:

'Flavio'.
const name = 'Flavio'

af://h1-31

name.

This is an empty string: '' . Its length property is O:

Two strings can be joined using the + operator:

'A ' + 'string'

You can use the + operator to interpolate variables:

const name = 'Flavio'

'My name 1is + name

Another way to define strings is to use a special syntax called template literals, defined
inside backticks. They are especially useful to make multiline strings much simpler. With
single or double quotes you can't define a multiline string easily: you'd need to use escaping
characters.

Once a template literal is opened with the backtick, you just press enter to create a new line,
with no special characters, and it's rendered as-is:

const string = "Hey
this

string

is awesome!"

Template literals are also great because they provide an easy way to interpolate variables
and expressions into strings.

You do so by using the ${...} syntax:

const value = 'test'

const string = “something ${value}"

inside the ${} you can add anything, even expressions:

const string = “something ${1 + 2 + 3}

const string2 = “something

${a >b ? 'a' : 'b'}

Loops
Loops are one of the main control structures of JavaScript.

With a loop we can automate and repeat indefinitely a block of code, for how many times we
want it to run.

JavaScript provides many ways to iterate through loops.
| want to focus on 3 ways:

while loops
for loops

for..of loops

while
The while loop is the simplest looping structure that JavaScript provides us.

We add a condition after the while keyword, and we provide a block that is run until the
condition evaluates to true.

Example:

const list = ['a', 'b', 'c'l]

let 1 =20

while (i < list.) {
(list[il])
(i)

i=1i+1
¥

You can interrupt a while loop using the break keyword, like this:

while (true) {
if (somethingIsTrue) break

and if you decide that in the middle of a loop you want to skip the current iteration, you can
jump to the next iteration using continue:

af://h1-32
af://h2-33

while (true) {
if (somethingIsTrue) continue

Very similar to while, we have do..while loops. It's basically the same as while, except
the condition is evaluated after the code block is executed.

This means the block is always executed at least once.

Example:
const list = ['a', 'b', 'c']
let 1 =0
do {
(list[il])
(i)
i=1i+1
} while (i < list.)
for

The second very important looping structure in JavaScript is the for loop.

We use the for keyword and we pass a set of 3 instructions: the initialization, the condition,
and the increment part.

Example:

1
—
Q
~
(o
@]

const list

for (let i = 0; 1 < list. ;i) o
(list[i])
(i)

Just like with while loops, you can interrupt a for loop using break and you can fast
forward to the next iteration of a for loop using continue .

for...of

af://h2-34
af://h2-35

This loop is relatively recent (introduced in 2015) and it's a simplified version of the for
loop:

const list = ['a', 'b', 'c']

for (const value of list) {
(value)

Functions

In any moderately complex JavaScript program, everything happens inside functions.
Functions are a core, essential part of JavaScript.

What is a function?

A function is a block of code, self-contained.

Here's a function declaration:

function () {

A function can be run any time you want by invoking it, like this:

()

A function can have one or more arguments:

function () {

¥

function (color) {

¥

function (color, age) {

af://h1-36

When we can pass arguments, we invoke the function passing parameters:

function (color, age) {

('green', 24)
('black")

Note that in the second invocation | passed the black string parameter as the color
argument, but no age . In this case, age inside the function is undefined .

We can check if a value is not undefined using this conditional:

function (color, age) {
if (typeof age '== 'undefined') {
¥

b

typeof is a unary operator that allows us to check the type of a variable.

You can also check in this way:

function (color, age) {

if (age) {

although in this case the conditional will be false if age is null, @ or an empty string.

You can have default values for parameters, in case they are not passed:

function (color = 'black', age = 25) {

You can pass any value as a parameter: numbers, strings, booleans, arrays, objects, and
also functions.

A function has a return value. By default a function returns undefined , unless you add a

return keyword with a value:

function () {

return 'hi!'

We can assign this return value to a variable when we invoke the function:

function getData() {
// do something
return 'hi!'

const result = getData()

result now holds a string with the hi! value.

You can only return one value.

To return multiple values, you can return an object, or an array, like this:

function () {
return ['Flavio', 37]

let [name, age] = ()

Functions can be defined inside other functions:

= () == {

const =
const = () == {}

()
return 'test'

The nested function cannot be called from the outside of the enclosing function.

You can return a function from a function, too.

Arrow functions

af://h1-37

Arrow functions are a recent introduction to JavaScript.

They are very often used instead of "regular" functions, the one | described in the previous
chapter. You'll find both forms used everywhere.

Visually, they allow you to write functions with a shorter syntax, from:

function () {
}
to
() == {
}

But.. notice that we don't have a name here.
Arrow functions are anonymous. We must assign them to a variable.

We can assign a regular function to a variable, like this:

let = function () {

When we do so, we can remove the name from the function:

let = function () {

and invoke the function using the variable name:

let = function () {

That's the same thing we do with arrow functions:

If the function body contains just a single statement, you can omit the braces and write it all
on a single line:

const = () = . ('"hi!")

Parameters are passed in the parentheses:

const = (paraml, param2) => . (paraml, param2)

If you have one (and just one) parameter, you could omit the parentheses completely:

const = param => . (param)

Arrow functions allow you to have an implicit return: values are returned without having to
use the return keyword.

It works when there is a one-line statement in the function body:

const = () == 'test'

()

Like with regular functions, we can have default parameter values:

const getData = (color = 'black', age = 2) => {

and we can only return one value.
Arrow functions can contain other arrow functions, or also regular functions.

They are very similar, so you might ask why they were introduced? The big difference with
regular functions is when they are used as object methods. This is something we'll soon look
into.

Objects

Any value that's not of a primitive type (a string, a number, a boolean, a symbol, null, or
undefined) is an object.

Here's how we define an object:
const car = {}

This is the object literal syntax, which is one of the nicest things in JavaScript.

You can also initialize an object using the new keyword before a function with a capital
letter. This function serves as a constructor for that object. In there, we can initialize the
arguments we receive as parameters, to set up the initial state of the object:

function (brand, model) {
this. = brand
this. = model

¥

We initialize a new object using

const myCar = new ('Ford', 'Fiesta')
myCar.
myCar.

Objects are always passed by reference.

If you assign a variable the same value of another, if it's a primitive type like a number or a
string, they are passed by value:

Take this example:
let age = 36
let myAge = age

myAge = 37
age

const car = {
color: 'blue',

const anotherCar = car

af://h1-38

anotherCar. ‘yellow'

car.

Even arrays or functions are, under the hood, objects, so it's very important to understand
how they work.

Object Properties
Objects have properties, which are composed by a label associated with a value.

The value of a property can be of any type, which means that it can be an array, a function,
and it can even be an object, as objects can nest other objects.

This is the object literal syntax we saw in the previous chapter:
const car = {}
We can define a color property in this way:

const car = {

color: 'blue',

here we have a car object with a property named color , with the value blue.

Labels can be any string, but beware special characters: if | wanted to include a character
not valid as a variable name in the property name, | would have had to use quotes around it:

const car = {
color: 'blue',
'the color': 'blue',

Invalid variable name characters include spaces, hyphens, and other special characters.
As you see, when we have multiple properties, we separate each property with a comma.
We can retrieve the value of a property using 2 different syntaxes.

The first is dot notation:

car.

af://h2-39

The second (which is the only one we can use for properties with invalid names), is to use
square brackets:

car['the color']

If you access an unexisting property, you'll get the undefined value:

car.

As said, objects can have nested objects as properties:

const car = {

brand: {

name: 'Ford',
I
color: 'blue',

In this example, you can access the brand name using

car.

or

car['brand'] ['name']

You can set the value of a property when you define the object.

But you can always update it later on:

const car = {
color: 'blue',

}
car. = 'yellow'
car['color'] = 'red'

And you can also add new properties to an object:

car. = 'Fiesta'

car.
Given the object

const car = {
color: 'blue',
brand: 'Ford',

you can delete a property from this object using the delete operator:

delete car.

Object Methods

| talked about functions in a previous chapter.
Functions can be assigned to a function property, and in this case they are called methods.

In this example, the start property has a function assigned, and we can invoke it by using
the dot syntax we used for properties, with the parentheses at the end:

const car = {
brand: 'Ford',
model: 'Fiesta',
: function () {
('Started')

car. ()

Inside a method defined using a function() {} syntax we have access to the object
instance by referencing this .

In the following example, we have access to the brand and model properties values using
this.brand and this.model:

const car = {
brand: 'Ford',
model: 'Fiesta',
: function () {
(*Started

af://h2-40

${this. } ${this.)
s

car. ()

It's important to note this distinction between regular functions and arrow functions: we don't
have access to this if we use an arrow function:

const car = {
brand: 'Ford',
model: 'Fiesta',
() = A
("Started
${this. } ${this.)
}

car. ()

This is because arrow functions are not bound to the object.
This is the reason why regular functions are often used as object methods.

Methods can accept parameters, like regular functions:

const car = {
brand: 'Ford',
model: 'Fiesta',
: function (destination) {
(*Going to ${destination}’)

}I
}
car. ("Rome")
Classes

We talked about objects, which are one of the most interesting parts of JavaScript.

In this chapter we'll go up one level, introducing classes.

What are classes? They are a way to define a common pattern for multiple objects.

af://h1-41

Let's take a person object:

const person = {

name: 'Flavio',

We can create a class named Person (note the capital P, a convention when using
classes), that has a name property:

class {
(name) {

this. = name

Now from this class, we initialize a flavio object like this:

const flavio = new ()

flavio is called an instance of the Person class.

We can set the value of the name property:

flavio. = 'Flavio'

and we can access it using

flavio.

like we do for object properties.
Classes can hold properties, like name , and methods.

Methods are defined in this way:

class {
() {

return 'Hello, I am Flavio'

and we can invoke methods on an instance of the class:

class {

() {
return 'Hello, I am Flavio'
}
¥
const flavio = new ()
flavio. ()

There is a special method called constructor() that we can use to initialize the class
properties when we create a new object instance.

It works like this:

class {
(name) {
this. = name
¥
() {
return 'Hello, I am ' + this. + '
¥
b

Note how we use this to access the object instance.

Now we can instantiate a new object from the class, passing a string, and when we call
hello, we'll get a personalized message:

const flavio = new (*flavio')
flavio. ()

When the object is initialized, the constructor method is called, with any parameters
passed.

Normally methods are defined on the object instance, not on the class.

You can define a method as static to allow it to be executed on the class instead:

class {
static () {
return 'Hello'
hs

Person. ()

This is very useful, at times.

Inheritance

A class can extend another class, and objects initialized using that class inherit all the
methods of both classes.

Suppose we have a class Person :

class {

() {

return 'Hello, I am a Person'

We can define a new class Programmer that extends Person:
class extends {}

Now if we instantiate a new object with class Programmer , it has access to the hello()
method:

const flavio = new ()
flavio. ()

Inside a child class, you can reference the parent class calling super() :

class extends {
() {
return super. () + '. I am also a programmer. '
}
¥
const flavio = new ()
flavio. ()

The above program prints Hello, | am a Person. | am also a programmer..

Asynchronous Programming

af://h1-42
af://h1-43

Most of the time, JavaScript code is run synchronously.

This means that a line of code is executed, then the next one is executed, and so on.
Everything is as you expect, and how it works in most programming languages.

However, there are times when you cannot just wait for a line of code to execute.

You can't just wait 2 seconds for a big file to load, and halt the program completely.

You can't just wait for a network resource to be downloaded, before doing something else.

JavaScript solves this problem using callbacks.

Callbacks

One of the simplest examples of how to use callbacks is timers. Timers are not part of
JavaScript, but they are provided by the browser, and Node.js. Let me talk about one of the
timers we have: setTimeout() .

The setTimeout() function accepts 2 arguments: a function, and a number. The number is
the milliseconds that must pass before the function is run.

Example:

(() == {

("inside the function')
}, 2000)

The function containing the console.log('inside the function') line will be executed
after 2 seconds.

If you add a console. log('before') priorto the function, and console.log('after")

after it:
('before')
(() => A
("inside the function')
}, 2000)

('after')

You will see this happening in your console:

af://h1-44

before
after

inside the function

The callback function is executed asynchronously.

This is a very common pattern when working with the file system, the network, events, or the
DOM in the browser.

All of the things | mentioned are not "core" JavaScript, so they are not explained in this
handbook, but you'll find lots of examples in my other handbooks available at
flaviocopes.com.

Here's how we can implement callbacks in our code.
We define a function that accepts a callback parameter, which is a function.

When the code is ready to invoke the callback, we invoke it passing the result:

const = (callback) => {

const result =
(result)

Code using this function would use it like this:

((result) => {
(result)
1)

Promises

Promises are an alternative way to deal with asynchronous code.

As we saw in the previous chapter, with callbacks we'd be passing a function to another
function call, that would be called when the function has finished processing.

Like this:

((result) => {
(result)

https://flaviocopes.com/
af://h1-45

})

When the doSomething() code ends, it calls the function received as a a parameter:

const = (callback) => {

const result =
(result)

The main problem with this approach is that if we need to use the result of this function in the
rest of our code, all our code must be nested inside the callback, and if we have to do 2-3

callbacks we enter in what is usually defined "callback hell" with many levels of functions
indented into other functions:

((result) => {
((anotherResult) => {
((yetAnotherResult) => {
(result)

Promises are one way to deal with this.

Instead of doing:

((result) => {
(result)
1)

We call a promise-based function in this way:

(). ((result) => {
(result)

We first call the function, then we have a then() method that is called when the function
ends.

The indentation does not matter, but you'll often use this style for clarity.

It's common to detect errors using a catch() method:

()
((result) => {
(result)
})
.catch((error) => {

(error)

})

Now, to be able to use this syntax, the doSomething() function implementation must return
a Promise.

You typically write it as a function that creates and returns a new Promise:

const = () =
new ((resolve, reject) => {
1)

The executor function receives 2 parameters. The first is a function we call to resolve the
promise, the second is a function we call to reject the promise.

Resolving a promise means completing it successfully (which results in calling the then()
handler in the caller).

Rejecting a promise means ending it with an error (which results in calling the catch()
handler in the caller).

Here's how:
const = () =
new ((resolve, reject) => {

const success =
if (success) {

('ok")
} else {

(new ('this error occurred'))

We can pass a parameter to the resolve and reject functions, of any type we want.

Async and Await

Async functions are a higher level abstraction over promises.

An async function returns a promise, like in this example:

const = () == {
return new ((resolve, reject) => {
(() => ('some data'), 2000)
})
b

Any code that wants to use this function will use the await keyword right before the
function:

const data = await ()

and doing so, any data returned by the promise is going to be assigned to the data
variable.

In our case, the data is the "some data" string.

With one particular caveat: whenever we use the await keyword, we must do so inside a
function defined as async .

Like this:
const = async () => {
const data = await ()
(data)
}

The Async/await duo allows us to have a cleaner code and a simple mental model to work
with asynchronous code.

As you can see in the example above, our code looks very simple. Compare it to code using
promises, or callback functions.

And this is a very simple example, the major benefits will arise when the code is much more
complex.

As an example, here's how you would get a JSON resource using the Fetch API, and parse
it, using promises:

af://h1-46

const = () = {

return (

('/users.json')

((response) => response. ()

((users) => users|[0])

((user) => (*/users/${user.)

((userResponse) => userResponse. ())

()

And here is the same functionality provided using await/async:

const = async () => {
const response = await ('/users.json')
const users = await response. ()

const user = users[0]
const userResponse = await (*/users/${user.

const userData = await userResponse. ()

return userData

()

Variables scope

af://h1-47

When [introduced variables, | talked about using const, let,and var.
Scope is the set of variables that's visible to a part of the program.
In JavaScript we have a global scope, block scope and function scope.

If a variable is defined outside of a function or block, it's attached to the global object and it
has a global scope, which means it's available in every part of a program.

There is a very important difference between var, let and const declarations.

A variable defined as var inside a function is only visible inside that function. Similarly to a
function arguments:

A variable defined as const or let on the other hand is only visible inside the block where
it is defined.

A block is a set of instructions grouped into a pair of curly braces, like the ones we can find
inside an if statementora for loop. And a function, too.

It's important to understand that a block does not define a new scope for var, but it does for
let and const.

This has very practical implications.

Suppose you define a var variable inside an if conditional in a function

function () A{
if (true) {
var data = 'some data'
(data)
}
b

If you call this function, you'll get some data printed to the console.

If you try to move console.log(data) after the if , it still works:

function () A{
if (true) {
var data = 'some data'
}
(data)
b

But if you switch var data to let data:

function () {
if (true) {
let data = 'some data'

(data)

You'll get an error: ReferenceError: data is not defined.

This is because var is function scoped, and there's a special thing happening here, called
hoisting. In short, the var declaration is moved to the top of the closest function by
JavaScript, before it runs the code. More or less this is what the function looks like to JS,
internally:

function () A{
var data
if (true) {
data = 'some data’
}
(data)
¥

This is why you can also console.log(data) atthe top of a function, even before it's
declared, and you'll get undefined as a value for that variable:

function () A{
(data)
if (true) {
var data = 'some data'
}
¥

but if you switch to let, you'll get an error ReferenceError: data is not defined,
because hoisting does not happen to let declarations.

const follows the same rules as let : it's block scoped.

It can be tricky at first, but once you realize this difference, then you'll see why var is
considered a bad practice nowadays compared to let : they do have fewer moving parts,
and their scope is limited to the block, which also makes them very good as loop variables,
because they cease to exist after a loop has ended:

function () {
for (var i = 0; i < 10; i++) {

(1)

(i)

()

When you exit the loop, i will be a valid variable with value 10.

If you switch to let, if you try to console.log(i) will resultin an error ReferenceError:
i is not defined.

	Preface
	Legal
	Introduction to JavaScript
	A little bit of history
	Just JavaScript
	A brief intro to the syntax of JavaScript
	White space
	Case sensitive
	Literals
	Identifiers
	Comments

	Semicolons
	Values
	Variables
	Types
	Primitive types
	Object types

	Expressions
	Operators
	The addition operator (+)
	The subtraction operator (-)
	The division operator (/)
	The remainder operator (%)
	The multiplication operator (*)
	The exponentiation operator (**)

	Precedence rules
	Comparison operators
	Conditionals
	Else

	Arrays
	Strings
	Loops
	while
	for
	for...of

	Functions
	Arrow functions
	Objects
	Object Properties
	Object Methods

	Classes
	Inheritance
	Asynchronous Programming
	Callbacks
	Promises
	Async and Await
	Variables scope

