

Preface
This book aims to be an introduction to HTML.

This book was first published 2019.

Last updated in early 2025.

Legal
Flavio Copes, 2025. All rights reserved.

Downloaded from flaviocopes.com.

No part of this book may be reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher.

The information in this book is for educational and informational purposes only and is not
intended as legal, financial, or other professional advice. The author and publisher make no
representations as to the accuracy, completeness, suitability, or validity of any information in
this book and will not be liable for any errors, omissions, or delays in this information or any
losses, injuries, or damages arising from its use.

This book is provided free of charge to the newsletter subscribers of Flavio Copes. It is for
personal use only. Redistribution, resale, or any commercial use of this book or any portion
of it is strictly prohibited without the prior written permission of the author.

If you wish to share a portion of this book, please provide proper attribution by crediting
Flavio Copes and including a link to flaviocopes.com.

Preface
This book aims to help you quickly learn HTML and get familiar with the advanced HTML
topics.

HTML, a shorthand for Hyper Text Markup Language, is one of the most fundamental
building blocks of the Web.

HTML was officially born in 1993 and since then it evolved into its current state, moving from
simple text documents to powering rich Web Applications.

This handbook is aimed at a vast audience.

First, the beginner. I explain HTML from zero in a succinct but comprehensive way, so you
can use this book to learn HTML from the basics.

https://flaviocopes.com/
http://flaviocopes.com/
af://h1-1
af://h1-2
af://h1-3

Then, the professional. HTML is often considered like a secondary thing to learn. It might be
given for granted.

Yet lots of things are obscure to many people. Me included. I wrote this handbook to help my
understanding of the topic, because when I need to explain something, I better make sure I
first know the thing inside out.

Even if you don’t write HTML in your day to day work, knowing how HTML works can help
save you some headaches when you need to understand it from time to time, for example
while tweaking a web page.

HTML is the foundation of the marvel called the Web.

There is an incredible power underneath this rather simple and limited set of rules, which
lets us – developers, makers, designers, writers, and tinkerers – craft documents, apps, and
experiences for people all around the globe.

My first HTML book came out in 1997 and was called “HTML Unleashed”. A big, lots-of-
pages, long tome.

20+ years have passed, and HTML is still the foundation of the Web, with minimal changes
from back then.

Sure, we got more semantic tags, presentational HTML is no longer a thing, and CSS has
taken care of the design of things.

HTML’s success is based on one thing: simplicity.

It resisted being hijacked into an XML dialect via XHTML, when eventually people realized
that thing was way, way too complex.

It did so because of another feature it provides us: forgiveness. There are some rules, right,
but after you learn those, you have a lot of freedom.

Browsers learned to be resilient and to always try to do their best when parsing and
presenting HTML to the users.

And the whole Web platform did one thing right: it never broke backward compatibility. Pretty
incredibly, we can go back to HTML documents written in 1991, and they look pretty much
as they looked back then.

We even know what the first web page was. It’s this:
http://info.cern.ch/hypertext/WWW/TheProject.html

And you can see the source of the page, thanks to another big feature of the Web and
HTML: we can inspect the HTML of any web page.

Don’t take this for granted. I don’t know any other platform that gives us this ability.

http://info.cern.ch/hypertext/WWW/TheProject.html

The exceptional Developer Tools built into any browser let us inspect and take inspiration
from HTML written by anyone in the world.

If you are new to HTML this book aims to help you get started. If you are a seasoned Web
Developer this book will improve your knowledge.

I learned so much while writing it, even though I’ve been working with the Web for 20+
years, and I’m sure you’ll find something new, too.

Or you’ll re-learn something old you forgot.

In any case, the goal of the book is to be useful to you, and I hope it succeeds.

HTML Basics
HTML is a standard defined by the WHATWG, an acronym for Web Hypertext Application
Technology Working Group, an organization formed by people working on the most popular
web browser. This means it’s basically controlled by Google, Mozilla, Apple and Microsoft.

In the past the W3C (World Wide Web Consortium) was the organization in charge of
creating the HTML standard.

The control informally moved from W3C to WHATWG when it became clear that the W3C
push towards XHTML was not a good idea.

If you’ve never heard of XHTML, here’s a short story. In the early 2000s, we all believed the
future of the Web was XML (seriously). So HTML moved from being an SGML-based
authoring language to an XML markup language.

It was a big change. We had to know, and respect, more rules. Stricter rules.

Eventually browser vendors realized this was not the right path for the Web, and they
pushed back, creating what is now known as HTML5.

W3C did not really agree on giving up control of HTML, and for years we had 2 competing
standards, each one aiming to be the official one. Eventually on 28 May 2019 it was made
official by W3C that the “true” HTML version was the one published by WHATWG.

I mentioned HTML5. Let me explain this little story. I know, it’s kind of confusing up to now,
as with many things in life when many actors are involved, yet it’s also fascinating.

We had HTML version 1 in 1993. Here’s the original RFC.

HTML 2 followed in 1995.

We got HTML 3 in January 1997, and HTML 4 in December 1997.

Busy times!

https://tools.ietf.org/html/rfc1983
af://h1-4

20+ years went by, we had this entire XHTML thing, and eventually we got to this HTML5
“thing”, which is not really just HTML any more.

HTML5 is a term that now defines a whole set of technologies, which includes HTML but
adds a lot of APIs and standards like WebGL, SVG and more.

The key thing to understand here is this: there is no such thing (any more) as an HTML
version now. It’s a living standard. Like CSS, which is called “3”, but in reality is a bunch of
independent modules developed separately. Like JavaScript, where we have one new
edition each year, but nowadays, the only thing that matters is which individual features are
implemented by the engine.

Yes we call it HTML5, but HTML4 is from 1997. That’s a long time for anything, let alone for
the web.

This is where the standard now “lives”: https://html.spec.whatwg.org/multipage.

HTML is the markup language we use to structure content that we consume on the Web.

HTML is served to the browser in different ways.

Let’s dive into this last case. Although in practice it’s probably the least popular way to
generate HTML, it’s still essential to know the basic building blocks.

By convention, an HTML file is saved with a .html or .htm extension.

Inside this file, we organize the content using tags.

Tags wrap the content, and each tag gives a special meaning to the text it wraps.

Let’s make a few examples.

This HTML snippet creates a paragraph using the p tag:

This HTML snippet creates a list of items using the ul tag, which means unordered list, and
the li tags, which mean list item:

It can be generated by a server-side application that builds it depending on the request
or the session data, for example a Rails or Laravel or Django application.

It can be generated by a JavaScript client-side application that generates HTML on the
fly.
In the simplest case, it can be stored in a file and served to the browser by a Web
server.

<p>A paragraph of text</p>

https://html.spec.whatwg.org/multipage

When an HTML page is served by the browser, the tags are interpreted, and the browser
renders the elements according to the rules that define their visual appearance.

Some of those rules are built-in, such as how a list renders or how a link is underlined in
blue.

Some other rules are set by you with CSS.

HTML is not presentational. It’s not concerned with how things look. Instead, it’s concerned
with what things mean.

It’s up to the browser to determine how things look, with the directives defined by who builds
the page, with the CSS language.

Now, those two examples I made are HTML snippets taken outside of a page context.

HTML page structure
Let’s make an example of a proper HTML page.

Things start with the Document Type Declaration (aka doctype), a way to tell the browser
this is an HTML page, and which version of HTML we are using.

Modern HTML uses this doctype:

Then we have the html element, which has an opening and closing tag:

Most tags come in pairs with an opening tag and a closing tag. The closing tag is written the
same as the opening tag, but with a / :

 First item

 Second item

 Third item

<!DOCTYPE html>

<!DOCTYPE html>

<html>

 ...

</html>

<sometag>some content</sometag>

af://h1-5

There are a few self-closing tags, which means they don’t need a separate closing tag as
they don’t contain anything in them.

The html starting tag is used at the beginning of the document, right after the document
type declaration.

The html ending tag is the last thing present in an HTML document.

Inside the html element we have 2 elements: head and body :

Inside head we will have tags that are essential to creating a web page, like the title, the
metadata, and internal or external CSS and JavaScript. Mostly things that do not directly
appear on the page, but only help the browser (or bots like the Google search bot) display it
properly.

Inside body we will have the content of the page. The visible stuff.

Tags vs elements
I mentioned tags and elements. What’s the difference?

Elements have a starting tag and a closing tag. In this example, we use the p starting and
closing tags to create a p element:

So, an element constitutes the whole package:

If an element doesn’t have a closing tag, it is only written with the starting tag, and it cannot
contain any text content.

<!doctype html>

<html>

 <head>

 ...

 </head>

 <body>

 ...

 </body>

</html>

<p>A paragraph of text</p>

starting tag
text content (and possibly other elements)

closing tag

af://h1-6

That said, I might use the tag or element term in the book meaning the same thing, except if
I explicitly mention starting tag or ending tag.

Attributes
The starting tag of an element can have special snippets of information we can attach, called
attributes.

Attributes have the key="value" syntax:

You can also use single quotes, but using double quotes in HTML is a nice convention.

We can have many of them:

and some attributes are boolean, meaning you only need the key:

The class and id attributes are two of the most common you will find used.

They have a special meaning, and they are useful both in CSS and JavaScript.

The difference between the two is that an id is unique in the context of a web page; it
cannot be duplicated.

Classes, on the other hand, can appear multiple times on multiple elements.

Plus, an id is just one value. class can hold multiple values, separated by a space:

It’s common to use the dash - to separate words in a class value, but it’s just a convention.

Those are just two of the possible attributes you can have. Some attributes are only used for
one tag. They are highly specialized.

Other attributes can be used in a more general way. You just saw id and class , but we
have other ones too, like style which can be used to insert inline CSS rules on an element.

Case insensitive

<p class="a-class">A paragraph of text</p>

<p class="a-class" id="an-id">A paragraph of text</p>

<script defer src="file.js"></script>

<p class="a-class another-class">A paragraph of text</p>

af://h1-7
af://h1-8

HTML is case insensitive. Tags can be written in all caps, or lowercase. In the early days,
caps were the norm. Today lowercase is the norm. It is a convention.

You usually write like this:

not like this:

White space
Pretty important. In HTML, even if you add multiple white spaces into a line, it’s collapsed by
the browser’s CSS engine.

For example the rendering of this paragraph

is the same as this:

and the same as this:

Using the white-space CSS property you can change how things behave. You can find
more information on how CSS processes white space in the CSS Spec

I’d say use the syntax that makes things visually more organized and easier to read, but you
can use any syntax you like.

I typically favor

or

<p>A paragraph of text</p>

<P>A paragraph of text</P>

<p>A paragraph of text</p>

<p>A paragraph of text </p>

<p> A paragraph of text

 </p>

<p>A paragraph of text</p>

<p> A paragraph of text

</p>

af://h1-9

Nested tags should be indented with 2 or 4 characters, depending on your preference:

Note: this “white space is not relevant” feature means that if you want to add additional
space, it can make you pretty mad. I suggest you use CSS to make more space when
needed.

Note: in special cases, you can use the HTML entity (an acronym that means non-
breaking space) - more on HTML entities later on. I think this should not be abused. CSS
is always preferred to alter the visual presentation.

The document heading
The head tag contains special tags that define the document properties.

It’s always written before the body tag, right after the opening html tag:

We never use attributes on this tag. And we don’t write content in it.

It’s just a container for other tags.
Inside it we can have a wide variety of tags, depending on what you need to do:

The title tag

<body>

 <p>A paragraph of text</p>

 A list item

</body>

<!doctype html>

<html>

 <head>

 ...

 </head>

 ...

</html>

title

script

noscript

link

style

base

meta

af://h1-10
af://h2-11

The title tag determines the page title. The title is displayed in the browser, and it’s
especially important as it’s one of the key factors for Search Engine Optimization (SEO).

The script tag
This tag is used to add JavaScript into the page.

You can include it inline, using an opening tag, the JavaScript code and then the closing tag:

Or you can load an external JavaScript file by using the src attribute:

The type attribute by default is set to text/javascript, so it’s completely optional.

There is something pretty important to know about this tag.

Sometimes this tag is used at the bottom of the page, just before the closing </body> tag.
Why? For performance reasons.

Loading scripts by default blocks the rendering of the page until the script is parsed and
loaded.

By putting it at the bottom of the page, the script is loaded and executed after the whole
page is already parsed and loaded, giving a better experience to the user over keeping it in
the head tag.

My opinion is that this is now bad practice. Let script live in the head tag.

In modern JavaScript we have an alternative this is more performant than keeping the script
at the bottom of the page – the defer attribute. This is an example that loads a file.js
file, relative to the current URL:

This is the scenario that triggers the faster path to a fast-loading page, and fast-loading
JavaScript.

Note: the async attribute is similar, but in my opinion a worse option than defer. I
describe why, in more detail, on page https://flaviocopes.com/javascript-async-defer/

The noscript tag

<script>

..some JS

</script>

<script src="file.js"></script>

<script defer src="file.js"></script>

https://flaviocopes.com/javascript-async-defer/
af://h2-12
af://h2-13

This tag is used to detect when scripts are disabled in the browser.

Note: users can choose to disable JavaScript scripts in the browser settings. Or the
browser might not support them by default.

It is used differently depending on whether it’s put in the document head or in the document
body.

We’re talking about the document head now, so let’s first introduce this usage.

In this case, the noscript tag can only contain other tags:

to alter the resources served by the page, or the meta information, if scripts are disabled.

In this example I set an element with the no-script-alert class to display if scripts are
disabled, as it was display: none by default:

Let’s solve the other case: if put in the body, it can contain content, like paragraphs and
other tags, which are rendered in the UI.

The link tag
The link tag is used to set relationships between a document and other resources.

It’s mainly used to link an external CSS file to be loaded.

This element has no closing tag.

link tags
style tags
meta tags

<!doctype html>

<html>

 <head>

 ...

 <noscript>

 <style>

 .no-script-alert {

 display: block;

 }

 </style>

 </noscript>

 ...

 </head>

 ...

</html>

af://h2-14

Usage:

The media attribute allows the loading of different stylesheets depending on the device
capabilities:

We can also link to resources other than stylesheets.

For example we can associate an RSS feed using

Or we can associate a favicon using:

<!doctype html>

<html>

 <head>

 ...

 <link href="file.css" rel="stylesheet" />

 ...

 </head>

 ...

</html>

<link href="file.css" media="screen" rel="stylesheet" />

<link

 href="print.css"

 media="print"

 rel="stylesheet" />

<link rel="alternate" type="application/rss+xml" href="/index.xml" />

<link

 rel="apple-touch-icon"

 sizes="180x180"

 href="/assets/apple-touch-icon.png" />

<link

 rel="icon"

 type="image/png"

 sizes="32x32"

 href="/assets/favicon-32x32.png" />

<link

 rel="icon"

 type="image/png"

 sizes="16x16"

 href="/assets/favicon-16x16.png" />

This tag was also used for multi-page content, to indicate the previous and next page using
rel="prev" and rel="next" . Mostly for Google. As of 2019, Google announced it does
not use this tag any more because it can find the correct page structure without it.

The style tag
This tag can be used to add styles into the document, rather than loading an external
stylesheet.

Usage:

As with the link tag, you can use the media attribute to use that CSS only on the
specified medium (print in this case):

The base tag
This tag is used to set a base URL for all relative URLs contained in the page.

The meta tag
Meta tags perform a variety of tasks and they are very, very important.

Especially for SEO.

meta elements only have the starting tag.

<style>

 .some-css {

 }

</style>

<style media="print">

 .some-css {

 }

</style>

<!doctype html>

<html>

 <head>

 ...

 <base href="https://flaviocopes.com/" />

 ...

 </head>

 ...

</html>

https://twitter.com/googlewmc/status/1108726443251519489
af://h2-15
af://h2-16
af://h2-17

The most basic one is the description meta tag:

This might be used by Google to generate the page description in its result pages, if it finds it
better describes the page than the on-page content (don’t ask me how).

The charset meta tag is used to set the page character encoding. utf-8 in most cases:

The robots meta tag instructs the Search Engine bots whether to index a page or not:

Or if they should follow links or not:

You can set nofollow on individual links, too. This is how you can set nofollow globally.

You can combine them:

The default behavior is index, follow .

You can use other properties, including nosnippet , noarchive , noimageindex and more.

You can also just tell Google instead of targeting all search engines:

And other search engines might have their own meta tag, too.

Speaking of which, we can tell Google to disable some features. This prevents the translate
functionality in the search engine results:

The viewport meta tag is used to tell the browser to set the page width based on the
device width.

<meta name="description" content="A nice page" />

<meta charset="utf-8" />

<meta name="robots" content="noindex" />

<meta name="robots" content="nofollow" />

<meta name="robots" content="noindex, nofollow" />

<meta name="googlebot" content="noindex, nofollow" />

<meta name="google" content="notranslate" />

See more on this tag.

Another rather popular meta tag is the http-equiv="refresh" one. This line tells the
browser to wait 3 seconds, then redirect to that other page:

Using 0 instead of 3 will redirect as soon as possible.

This is not a full reference; Other less-used meta tags exist.

After this document heading introduction, we can start diving into the document body.

The document body
After the closing head tag, we can only have one thing in an HTML document: the body
element.

Just like the head and html tags, we can only have one body tag in one page.

Inside the body tag we have all the tags that define the content of the page.

Technically, the start and ending tags are optional. But I consider it a good practice to add
them. Just for clarity.

In the next chapters we’ll define the variety of tags you can use inside the page body.

But before, we must introduce a difference between block elements and inline elements.

Block elements vs inline elements
Visual elements, the ones defined in the page body, can be generally classified in 2
categories:

<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta http-equiv="refresh"

content="3;url=http://flaviocopes.com/another-page"/>

<!doctype html>

<html>

 <head>

 ...

 </head>

 <body>

 ...

 </body>

</html>

https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag
af://h1-18
af://h1-19

What is the difference?

Block elements, when positioned in the page, do not allow other elements next to them. To
the left, or to the right.

Inline elements instead can sit next to other inline elements.

The difference also lies in the visual properties we can edit using CSS. We can alter the
width/height, margin, padding and border of block elements. We can’t do that for inline
elements.

Note that using CSS we can change the default for each element, setting a p tag to be
inline, for example, or a span to be a block element.

Another difference is that inline elements can be contained in block elements. The reverse is
not true.

Some block elements can contain other block elements, but it depends. The p tag for
example does not allow such option.

Tags that interact with text
The p tag
This tag defines a paragraph of text.

It’s a block element.

Inside it, we can add any inline element we like, like span or a .

We cannot add block elements.

We cannot nest a p element into another one.

By default browsers style a paragraph with a margin on top and at the bottom. 16px in
Chrome, but the exact value might vary between browsers.

This causes two consecutive paragraphs to be spaced, replicating what we think of a
“paragraph” in printed text.

The span tag

block elements (p , div , heading elements, lists and list items, …)

inline elements (a , span , img , …)

<p>Some text</p>

af://h1-20
af://h2-21
af://h2-22

This is an inline tag that can be used to create a section in a paragraph that can be targeted
using CSS:

The br tag
This tag represents a line break. It’s an inline element, and does not need a closing tag.

We use it to create a new line inside a p tag, without creating a new paragraph.

And compared to creating a new paragraph, it does not add additional spacing.

The heading tags
HTML provides us 6 heading tags. From most important to least important, we have h1 ,
h2 , h3 , h4 , h5 , h6 .

Typically a page will have one h1 element, which is the page title. Then you might have one
or more h2 elements depending on the page content.

Headings, especially the heading organization, are also essential for SEO, and search
engines use them in various ways.

The browser by default will render the h1 tag bigger, and will make the elements size
smaller as the number near h increases:

<p>A part of the text and here another part</p>

<p>Some text
A new line</p>

af://h2-23
af://h2-24

All headings are block elements. They cannot contain other elements, just text.

The strong tag
This tag is used to mark the text inside it as strong. This is pretty important, it’s not a visual
hint, but a semantic hint. Depending on the medium used, its interpretation will vary.

Browsers by default make the text in this tag bold.

The em tag
This tag is used to mark the text inside it as emphasized. Like with strong , it’s not a visual
hint but a semantic hint.

Browsers by default make the text in this italic.

Quotes
The blockquote HTML tag is useful to insert citations in the text.

af://h2-25
af://h2-26
af://h2-27

Browsers by default apply a margin to the blockquote element. Chrome applies a 40px left
and right margin, and a 10px top and bottom margin.

The q HTML tag is used for inline quotes.

Horizontal line
Not really based on text, but the hr tag is often used inside a page. It means horizontal
rule , and it adds a horizontal line in the page.

Useful to separate sections in the page.

Code blocks
The code tag is especially useful to show code, because browsers give it a monospaced
font.

That’s typically the only thing that browsers do. This is the CSS applied by Chrome:

This tag is typically wrapped in a pre tag, because the code element ignores whitespace
and line breaks. Like the p tag.

Chrome gives pre this default styling:

which prevents white space collapsing and makes it a block element.

Lists
We have 3 types of lists:

Unordered lists are created using the ul tag. Each item in the list is created with the li
tag:

code {

 font-family: monospace;

}

pre {

 display: block;

 font-family: monospace;

 white-space: pre;

 margin: 1em 0px;

}

unordered lists

ordered lists
definition lists

af://h2-28
af://h2-29
af://h2-30

Ordered lists are similar, just made with the ol tag:

The difference between the two is that ordered lists have a number before each item:

Definition lists are a bit different. You have a term, and its definition:

This is how browsers typically render them:

 First

 Second

 First

 Second

<dl>

 <dt>Flavio</dt>

 <dd>The name</dd>

 <dt>Copes</dt>

 <dd>The surname</dd>

</dl>

I must say you rarely see them in the wild, for sure not much as ul and ol , but sometimes
they might be useful.

Other text tags
There is a number of tags with presentational purposes:

This is an example of the visual rendering of them which is applied by default by browsers:

You might wonder, how is b different than strong ? And how i is different than em ?

the mark tag
the ins tag

the del tag
the sup tag

the sub tag
the small tag
the i tag

the b tag

af://h2-31

The difference lies in the semantic meaning. While b and i are a direct hint at the browser
to make a piece of text bold or italic, strong and em give the text a special meaning, and
it’s up to the browser to give the styling. Which happens to be exactly the same as b and
i , by default. Although you can change that using CSS.

There are a number of other, less used tags related to text. I just mentioned the ones that I
see used the most.

Links
Links are defined using the a tag. The link destination is set via its href attribute.

Example:

Between the starting and closing tag we have the link text.

The above example is an absolute URL. Links also work with relative URLs:

In this case, when clicking the link the user is moved to the /test URL on the current
origin.

Be careful with the / character. If omitted, instead of starting from the origin, the browser
will just add the test string to the current URL.

Example, I’m on the page https://flaviocopes.com/axios/ and I have these links:

Link tags can include other things inside them, not just text. For example, images:

or any other elements, except other <a> tags.

If you want to open the link in a new tab, you can use the target attribute:

click here

click here

/test once clicked brings me to https://flaviocopes.com/test

test once clicked brings me to https://flaviocopes.com/axios/test

open in new tab

af://h1-32

Images
Images can be displayed using the img tag.

This tag accepts a src attribute, which we use to set the image source:

We can use a wide set of images. The most common ones are PNG, JPEG, GIF, SVG and
more recently WebP.

The HTML standard requires an alt attribute to be present, to describe the image. This is
used by screen readers and also by search engine bots:

You can set the width and height attributes to set the space that the element will take, so
that the browser can account for it and it does not change the layout when it’s fully loaded. It
takes a numeric value, expressed in pixels.

The figure tag
The figure tag is often used along with the img tag.

figure is a semantic tag often used when you want to display an image with a caption. You
use it like this:

The figcaption tag wraps the caption text.

Responsive images using srcset
The srcset attribute allows you to set responsive images that the browser can use
depending on the pixel density or window width, according to your preferences. This way, it
can only download the resources it needs to render the page, without downloading a bigger
image if it’s on a mobile device, for example.

Here’s an example, where we give 4 additional images for 4 different screen sizes:

<figure>

 <figcaption>A nice dog</figcaption>

</figure>

af://h1-33
af://h2-34
af://h2-35

In the srcset we use the w measure to indicate the window width.

Since we do so, we also need to use the sizes attribute:

In this example the (max-width: 500px) 100vw, (max-width: 900px) 50vw, 800px
string in the sizes attribute describes the size of the image in relation to the viewport, with
multiple conditions separated by a comma.

The media condition max-width: 500px sets the size of the image in correlation to the
viewport width. In short, if the window size is < 500px, it renders the image at 100% of the
window size.

If the window size is bigger but < 900px , it renders the image at 50% of the window size.

And if even bigger, it renders the image at 800px.

The vw unit of measure can be new to you, and in short we can say that 1 vw is 1% of the
window width, so 100vw is 100% of the window width.

A useful website to generate the srcset and progressively smaller images is
https://responsivebreakpoints.com/.

The picture tag
HTML also gives us the picture tag, which does a very similar job to srcset , and the
differences are very subtle.

<img

 src="dog.png"

 alt="A picture of a dog"

 srcset="

 dog-500.png 500w,

 dog-800.png 800w,

 dog-1000.png 1000w,

 dog-1400.png 1400w

 " />

<img

 src="dog.png"

 alt="A picture of a dog"

 sizes="(max-width: 500px) 100vw, (max-width: 900px) 50vw, 800px"

 srcset="

 dog-500.png 500w,

 dog-800.png 800w,

 dog-1000.png 1000w,

 dog-1400.png 1400w

 " />

https://responsivebreakpoints.com/
af://h2-36

You use picture when instead of just serving a smaller version of a file, you completely
want to change it. Or serve a different image format.

The best use case I found is when serving a WebP image, which is a format still not widely
supported. In the picture tag you specify a list of images, and they will be used in order,
so in the next example, browsers that support WebP will use the first image, and fallback to
JPG if not:

The source tag defines one (or more) formats for the images. The img tag is the fallback
in case the browser is very old and does not support the picture tag.

In the source tag inside picture you can add a media attribute to set media queries.

The example that follows kind of works like the above example with srcset :

But that’s not its use case, because as you can see it’s much more verbose.

The picture tag is recent but is now supported by all the major browsers except Opera
Mini and IE (all versions).

Container tags and page structure HTML
Container tags
HTML provides a set of container tags. Those tags can contain an unspecified set of other
tags.

We have:

<picture>

 <source type="image/webp" srcset="image.webp" />

</picture>

<picture>

 <source media="(min-width: 500w)" srcset="dog-500.png" sizes="100vw"

/>

 <source media="(min-width: 800w)" srcset="dog-800.png" sizes="100vw"

/>

 <source media="(min-width: 1000w)" srcset="dog-1000.png" sizes="800px"

/>

 <source media="(min-width: 1400w)" srcset="dog-1400.png" sizes="800px"

/>

</picture>

article

https://caniuse.com/#search=picture
af://h1-37
af://h2-38

and it can be confusing to understand the difference between them.

Let’s see when to use each one of them.

article

The article tag identifies a thing that can be independent from other things in a page.

For example a list of blog posts in the homepage.

Or a list of links.

We’re not limited to lists: an article can be the main element in a page.

Inside an article tag we should have a title (h1 - h6) and

section

Represents a section of a document. Each section has a heading tag (h1 - h6), then the
section body.

Example:

section

div

<div>

 <article>

 <h2>A blog post</h2>

 <a ...>Read more

 </article>

 <article>

 <h2>Another blog post</h2>

 <a ...>Read more

 </article>

</div>

<article>

 <h2>A blog post</h2>

 <p>Here is the content...</p>

</article>

<section>

 <h2>A section of the page</h2>

 <p>...</p>

</section>

af://h3-39
af://h3-40

It’s useful to break a long article into different sections.

Shouldn’t be used as a generic container element. div is made for this.

div

div is the generic container element:

You often add a class or id attribute to this element, to allow it to be styled using CSS.

We use div in any place where we need a container but the existing tags are not suited.

Tags related to page
nav

This tag is used to create the markup that defines the page navigation. Into this we typically
add an ul or ol list:

aside

The aside tag is used to add a piece of content that is related to the main content.

A box where to add a quote, for example. Or a sidebar.

Example:

Using aside is a signal that the things it contains are not part of the regular flow of the
section it lives into.

header

<div>...</div>

<nav>

 Home

 Blog

</nav>

<div>

 <p>some text..</p>

 <aside><p>A quote..</p></aside>

 <p>other text...</p>

</div>

af://h3-41
af://h2-42
af://h3-43
af://h3-44
af://h3-45

The header tag represents a part of the page that is the introduction. It can for example
contain one or more heading tag (h1 - h6), the tagline for the article, an image.

main

The main tag represents the main part of a page:

footer

The footer tag is used to determine the footer of an article, or the footer of the page:

Forms
Forms are the way you can interact with a page, or an app, built with Web technologies.

You have a set of controls, and when you submit the form, either with a click to a “submit”
button or programmatically, the browser will send the data to the server.

By default this data sending causes the page to reload after the data is sent, but using
JavaScript you can alter this behavior (not going to explain how in this book).

A form is created using the form tag:

<article>

 <header>

 <h1>Article title</h1>

 </header>

 ...

</div>

<body>

 ...

 <main><p>....</p></main>

</body>

<article>

 ...

 <footer>

 <p>Footer notes..</p>

 </footer>

</div>

<form>...</form>

af://h3-46
af://h3-47
af://h1-48

By default forms are submitted using the GET HTTP method. Which has its drawbacks, and
usually you want to use POST.

You can set the form to use POST when submitted by using the method attribute:

The form is submitted, either using GET or POST, to the same URL where it resides.

So if the form is in the https://flaviocopes.com/contacts page, pressing the “submit”
button will make a request to that same URL.

Which might result in nothing happening.

You need something server-side to handle the request, and typically you “listen” for those
form submit events on a dedicated URL.

You can specify the URL via the action parameter:

This will cause the browser to submit the form data using POST to the /new-contact URL
on the same origin.

If the origin (protocol + domain + port) is https://flaviocopes.com (port 80 is the
default), this means the form data will be sent to https://flaviocopes.com/new-
contact .

I talked about data. Which data?

Data is provided by users via the set of controls that are available on the Web platform:

Let’s introduce each one of them in the following form fields overview.

The input tag

<form method="POST">...</form>

<form action="/new-contact" method="POST">

...

</form>

input boxes (single line text)

text areas (multiline text)
select boxes (choose one option from a drop-down menu)
radio buttons (choose one option from a list always visible)

checkboxes (choose zero, one or more option)
file uploads
and more!

af://h2-49

The input field is one of the most widely used form elements. It’s also a very versatile
element, and it can completely change behavior based on the type attribute.

The default behavior is to be a single-line text input control:

Equivalent to using:

As with all the other fields that follow, you need to give the field a name in order for its
content to be sent to the server when the form is submitted:

The placeholder attribute is used to have some text showing up, in light gray, when the
field is empty. Useful to add a hint to the user for what to type in:

Email

Using type="email" will validate client-side (in the browser) an email for correctness
(semantic correctness, not ensuring the email address is existing) before submitting.

Password

Using type="password" will make every key entered appear as an asterisk (*) or dot,
useful for fields that host a password.

Numbers

You can have an input element accept only numbers:

<input />

<input type="text" />

<input type="text" name="username" />

<input type="text" name="username" placeholder="Your username" />

<input type="email" name="email" placeholder="Your email" />

<input type="password" name="password" placeholder="Your password" />

<input

 type="number"

af://h3-50
af://h3-51
af://h3-52

You can specify a minimum and maximum value accepted:

The step attribute helps identify the steps between different values. For example this
accepts a value between 10 and 50, at steps of 5:

Hidden field

Fields can be hidden from the user. They will still be sent to the server upon the form submit:

This is commonly used to store values like a CSRF token, used for security and user
identification, or even to detect robots sending spam, using special techniques.

It can also just be used to identify a form and its action.

Setting a default value

All those fields accept a predefined value. If the user does not change it, this will be the
value sent to the server:

If you set a placeholder, that value will appear if the user clears the input field value:

 name="age"

 placeholder="Your age" />

<input

 type="number"

name="age"

placeholder="Your age"

min="18"

max="110" />

<input

type="number"

name="a-number"

min="10"

max="50"

step="5" />

<input

type="hidden"

name="some-hidden-field"

value="some-value" />

<input type="number" name="age" value="18" />

af://h3-53
af://h3-54

Form submit
The type="submit" field is a button that, once pressed by the user, submits the form:

The value attribute sets the text on the button, which if missing shows the “Submit” text:

Form validation
Browsers provide client-side validation functionality to forms.

You can set fields as required, ensuring they are filled, and enforce a specific format for the
input of each field.

Let’s see both options.

Set fields as required

The required attribute helps you with validation. If the field is not set, client-side validation
fails and the browser does not submit the form:

Enforce a specific format

I described the type="email" field above. It automatically validates the email address
according to a format set in the specification.

In the type="number" field, I mentioned the min and max attribute to limit values entered
to an interval.

You can enforce a specific format on any field through the pattern attribute, which gives
you the ability to set a regular expression to validate the value against.

I recommend reading my Regular Expressions Guide at flaviocopes.com/javascript-regular-
expressions/.

<input

type="number"

name="age"

placeholder="Your age"

value="18" />

<input type="submit" />

<input type="submit" value="Click me" />

<input type="text" name="username" required />

https://flaviocopes.com/javascript-regular-expressions/
af://h2-55
af://h2-56
af://h3-57
af://h3-58

Example:

Other fields

File uploads

You can load files from your local computer and send them to the server using a
type="file" input element:

You can attach multiple files:

You can specify one or more file types allowed using the accept attribute. This accepts
images:

You can use a specific MIME type, like application/json or set a file extension like
.pdf . Or set multiple file extensions, like this:

Buttons

The type="button" input fields can be used to add additional buttons to the form, that are
not submit buttons:

They are used to programmatically do something, using JavaScript.

<input type="text" name="username" pattern="[a-zA-Z]{8}" />

<input type="file" name="secret-documents" />

<input type="file" name="secret-documents" multiple />

<input

type="file"

name="secret-documents"

accept="image/*" />

<input

type="file"

name="secret-documents"

accept=".jpg, .jpeg, .png" />

<input type="button" value="Click me" />

af://h2-59
af://h3-60
af://h3-61

There is a special field rendered as a button, whose special action is to clear the entire form
and bring back the state of the fields to the initial one:

Radio buttons

Radio buttons are used to create a set of choices, of which one is pressed and all the others
are disabled.

The name comes from old car radios that had this kind of interface.

You define a set of type="radio" inputs, all with the same name attribute, and different
value attribute:

Once the form is submitted, the color data property will have one single value.

There’s always one element checked. The first item is the one checked by default.

You can set the value that’s pre-selected using the checked attribute. You can use it only
once per radio inputs group.

Checkboxes

Similar to radio boxes, but they allow multiple values to be chosen, or none at all.

You define a set of type="checkbox" inputs, all with the same name attribute, and different
value attribute:

All those checkboxes will be unchecked by default. Use the checked attribute to enable
them on page load.

Since this input field allows multiple values, upon form submit the value(s) will be sent to the
server as an array.

Date and time

We have a few input types to accept date values.

<input type="reset" />

<input type="radio" name="color" value="yellow" />

<input type="radio" name="color" value="red" />

<input type="radio" name="color" value="blue" />

<input type="checkbox" name="color" value="yellow" />

<input type="checkbox" name="color" value="red" />

<input type="checkbox" name="color" value="blue" />

af://h3-62
af://h3-63
af://h3-64

The type="date" input field allows the user to enter a date, and shows a date picker if
needed:

The type="time" input field allows the user to enter a time, and shows a time picker if
needed:

The type="month" input field allows the user to enter a month and a year:

The type="week" input field allows the user to enter a week and a year:

All those fields allow to limit the range and the step between each value. I recommend
checking MDN for the little details on their usage.

The type="datetime-local" field lets you choose a date and a time.

Here is a page to test them all: https://codepen.io/flaviocopes/pen/ZdWQPm

Color picker

You can let users pick a color using the type="color" element:

You set a default value using the value attribute:

The browser will take care of showing a color picker to the user.

Range

This input element shows a slider element. People can use it to move from a starting value
to an ending value:

<input type="date" name="birthday" />

<input type="time" name="time-to-pickup" />

<input type="month" name="choose-release-month" />

<input type="week" name="choose-week" />

<input type="datetime-local" name="date-and-time" />

<input type="color" name="car-color" />

<input type="color" name="car-color" value="#000000" />

https://codepen.io/flaviocopes/pen/ZdWQPm
af://h3-65
af://h3-66

You can provide an optional step:

Telephone

The type="tel" input field is used to enter a phone number:

The main selling point for using tel over text is on mobile, where the device can choose
to show a numeric keyboard.

Specify a pattern attribute for additional validation:

URL

The type="url" field is used to enter a URL.

You can validate it using the pattern attribute:

The textarea tag
The textarea element allows users to enter multi-line text. Compared to input , it requires
an ending tag:

You can set the dimensions using CSS, but also using the rows and cols attributes:

<input type="range" name="age" min="0" max="100" value="30" />

<input type="range" name="age" min="0" max="100" value="30" step="10" />

<input type="tel" name="telephone-number" />

<input

type="tel"

pattern="[0-9]{3}-[0-9]{8}"

name="telephone-number" />

<input type="url" name="website" />

<input type="url" name="website" pattern="https://.*" />

<textarea></textarea>

<textarea rows="20" cols="10"></textarea>

af://h3-67
af://h3-68
af://h2-69

As with the other form tags, the name attribute determines the name in the data sent to the
server:

The select tag
This tag is used to create a drop-down menu.

The user can choose one of the options available.

Each option is created using the option tag. You add a name to the select, and a value to
each option:

You can set an option disabled:

You can have one empty option:

Options can be grouped using the optgroup tag. Each option group has a label attribute:

<textarea name="article"></textarea>

<select name="color">

<option value="red">Red</option>

<option value="yellow">Yellow</option>

</select>

<select name="color">

 <option value="red" disabled>Red</option>

 <option value="yellow">Yellow</option>

</select>

<select name="color">

 <option value="">None</option>

 <option value="red">Red</option>

 <option value="yellow">Yellow</option>

</select>

<select name="color">

 <optgroup label="Primary">

 <option value="red">Red</option>

 <option value="yellow">Yellow</option>

 <option value="blue">Blue</option>

 </optgroup>

 <optgroup label="Others">

 <option value="green">Green</option>

 <option value="pink">Pink</option>

af://h2-70

Tables
In the early days of the web tables were a very important part of building layouts.

Later on they were replaced by CSS and its layout capabilities, and today we have powerful
tools like CSS Flexbox and CSS Grid to build layouts. Tables are now used just for, guess
what, building tables!

The table tag

You define a table using the table tag:

Inside the table we’ll define the data. We reason in terms of rows, which means we add rows
into a table (not columns). We’ll define columns inside a row.

Rows

A row is added using the tr tag, and that’s the only thing we can add into a table
element:

This is a table with 3 rows.

The first row can take the role of the header.

Column headers

The table header contains the name of a column, typically in a bold font.

Think about an Excel / Google Sheets document. The top A-B-C-D... header.

 </optgroup>

</select>

<table></table>

<table>

 <tr></tr>

 <tr></tr>

 <tr></tr>

</table>

af://h1-71
af://h3-72
af://h3-73
af://h3-74

We define the header using the th tag:

The table content

The content of the table is defined using td tags, inside the other tr elements:

This is how browsers render it, if you don’t add any CSS styling:

<table>

 <tr>

 <th>Column 1</th>

 <th>Column 2</th>

 <th>Column 3</th>

 </tr>

 <tr></tr>

 <tr></tr>

</table>

<table>

 <tr>

 <th>Column 1</th>

 <th>Column 2</th>

 <th>Column 3</th>

 </tr>

 <tr>

 <td>Row 1 Column 1</td>

 <td>Row 1 Column 2</td>

 <td>Row 1 Column 3</td>

 </tr>

 <tr>

 <td>Row 2 Column 1</td>

 <td>Row 2 Column 2</td>

 <td>Row 2 Column 3</td>

 </tr>

</table>

af://h3-75

Adding this CSS:

makes the table look more like a proper table:

Span columns and rows

A row can decide to span over 2 or more columns, using the colspan attribute:

th,td {

 padding: 10px;

 border: 1px solid #333;

}

<table>

 <tr>

 <th>Column 1</th>

af://h3-76

Or it can span over 2 or more rows, using the rowspan attribute:

 <th>Column 2</th>

 <th>Column 3</th>

 </tr>

 <tr>

 <td colspan="2">Row 1 Columns 1-2</td>

 <td>Row 1 Column 3</td>

 </tr>

 <tr>

 <td colspan="3">Row 2 Columns 1-3</td>

 </tr>

</table>

<table>

 <tr>

 <th>Column 1</th>

 <th>Column 2</th>

 <th>Column 3</th>

 </tr>

 <tr>

 <td colspan="2" rowspan="2">Rows 1-2 Columns 1-2</td>

 <td>Row 1 Column 3</td>

 </tr>

 <tr>

 <td>Row 2 Column 3</td>

 </tr>

</table>

Row headings

Before I explained how you can have column headings, using the th tag inside the first tr
tag of the table.

You can add a th tag as the first element inside a tr that’s not the first tr of the table, to
have row headings:

More tags to organize the table

You can add 3 more tags into a table, to have it more organized.

This is best when using big tables. And to properly define a header and a footer, too.

Those tags are

<table>

 <tr>

 <th></th>

 <th>Column 2</th>

 <th>Column 3</th>

 </tr>

 <tr>

 <th>Row 1</th>

 <td>Col 2</td>

 <td>Col 3</td>

 </tr>

 <tr>

 <th>Row 2</th>

 <td>Col 2</td>

 <td>Col 3</td>

 </tr>

</table>

thead

tbody

af://h3-77
af://h3-78

They wrap the tr tags to clearly define the different sections of the table. Here’s an
example:

Table caption

tfoot

<table>

 <thead>

 <tr>

 <th></th>

 <th>Column 2</th>

 <th>Column 3</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <th>Row 1</th>

 <td>Col 2</td>

 <td>Col 3</td>

 </tr>

 <tr>

 <th>Row 2</th>

 <td>Col 2</td>

 <td>Col 3</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <td></td>

 <td>Footer of Col 1</td>

 <td>Footer of Col 2</td>

 </tr>

 </tfoot>

</table>

af://h2-79

A table should have a caption tag that describes its content. That tag should be put
immediately after the opening table tag:

Multimedia tags: audio and video
In this section I want to show you the
audio and video tags.

The audio tag
This tag allows you to embed audio content in your HTML pages.

This element can stream audio, maybe using a microphone via getUserMedia() , or it can
play an audio source which you reference using the src attribute:

By default the browser does not show any controls for this element. Which means the audio
will play only if set to autoplay (more on this later) and the user can’t see how to stop it or
control the volume or move through the track.

To show the built-in controls, you can add the controls attribute:

Controls can have a custom skin.

You can specify the MIME type of the audio file using the type attribute. If not set, the
browser will try to automatically determine it:

<table>

 <caption>

 Dogs age

 </caption>

 <tr>

 <th>Dog</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Roger</td>

 <td>7</td>

 </tr>

</table>

<audio src="file.mp3"></audio>

<audio src="file.mp3" controls></audio>

<audio src="file.mp3" controls type="audio/mpeg"></audio>

af://h1-80
af://h2-81

An audio file by default does not play automatically. Add the autoplay attribute to play the
audio automatically:

Note: mobile browsers don’t allow autoplay

The loop attribute restarts the audio playing at 0:00 if set; otherwise, if not present, the
audio stops at the end of the file:

You can also play an audio file muted using the muted attribute (not really sure what’s the
usefulness of this):

Using JavaScript you can listen for various events happening on an audio element, the
most basic of which are:

The video tag
This tag allows you to embed video content in your HTML pages.

This element can stream video, using a webcam via getUserMedia() or WebRTC, or it can
play a video source which you reference using the src attribute:

By default the browser does not show any controls for this element, just the video.

Which means the video will play only if set to autoplay (more on this later) and the user can’t
see how to stop it, pause it, control the volume or skip to a specific position in the video.

To show the built-in controls, you can add the controls attribute:

Controls can have a custom skin.

<audio src="file.mp3" controls autoplay></audio>

<audio src="file.mp3" controls autoplay loop></audio>

<audio src="file.mp3" controls autoplay loop muted></audio>

play when the file starts playing
pause when the audio playing was paused
playing when the audio is resumed from a pause
ended when the end of the audio file was reached

<video src="file.mp4"></video>

<video src="file.mp4" controls></video>

af://h2-82

You can specify the MIME type of the video file using the type attribute. If not set, the
browser will try to automatically determine it:

A video file by default does not play automatically. Add the autoplay attribute to play the
video automatically:

Some browsers also require the muted attribute to autoplay. The video autoplays only if
muted:

The loop attribute restarts the video playing at 0:00 if set; otherwise, if not present, the
video stops at the end of the file:

You can set an image to be the poster image:

If not present, the browser will display the first frame of the video as soon as it’s available.

You can set the width and height attributes to set the space that the element will take so
that the browser can account for it and it does not change the layout when it’s finally loaded.
It takes a numeric value, expressed in pixels.

Using JavaScript you can listen for various events happening on an video element, the
most basic of which are:

iframes
The iframe tag allows us to embed content coming from other origins (other sites) into our
web page.

<video src="file.mp4" controls type="video/mp4"></video>

<video src="file.mp4" controls autoplay></video>

<audio src="file.mp3" controls autoplay muted></audio>

<video src="file.mp4" controls autoplay loop></video>

<video src="file.mp4" poster="picture.png"></video>

play when the file starts playing
pause when the video was paused
playing when the video is resumed from a pause
ended when the end of the video file was reached

af://h1-83

Technically, an iframe creates a new nested browsing context. This means that anything in
the iframe does not interfere with the parent page, and vice versa. JavaScript and CSS do
not “leak” to/from iframes.

Many sites use iframes to perform various things. You might be familiar with Codepen, Glitch
or other sites that allow you to code in one part of the page, and you see the result in a box.
That’s an iframe.

You create one this way:

You can load an absolute URL, too:

You can set a set of width and height parameters (or set them using CSS) otherwise the
iframe will use the defaults, a 300x150 pixels box:

srcdoc

The srcdoc attribute lets you specify some inline HTML to show. It’s an alternative to src ,
but recent and not supported in Edge 18 and lower, and in IE:

Sandbox
The sandbox attribute allows us to limit the operations allowed in the iframes.

If we omit it, everything is allowed:

If we set it to ““, nothing is allowed:

We can select what to allow by adding options in the sandbox attribute. You can allow
multiple ones by adding a space in between. Here’s an incomplete list of the options you can
use:

<iframe src="page.html"></iframe>

<iframe src="https://site.com/page.html"></iframe>

<iframe src="page.html" width="800" height="400"></iframe>

<iframe srcdoc="<p>My dog is a good dog</p>"></iframe>

<iframe src="page.html"></iframe>

<iframe src="page.html" sandbox=""></iframe>

af://h2-84
af://h2-85

Allow
Currently experimental and only supported by Chromium-based browsers, this is the future
of resource sharing between the parent window and the iframe.

It’s similar to the sandbox attribute, but lets us allow specific features, including:

Referrer
When loading an iframe, the browser sends it important information about who is loading it in
the Referer header (notice the single r , a typo we must live with).

The misspelling of referrer originated in the original proposal by computer scientist Phillip
Hallam-Baker to incorporate the field into the HTTP specification. The misspelling was
set in stone by the time of its incorporation into the Request for Comments standards
document RFC 1945

allow-forms : allow to submit forms
allow-modals allow to open modals windows, including calling alert() in
JavaScript
allow-orientation-lock allow to lock the screen orientation
allow-popups allow popups, using window.open() and target="_blank" links
allow-same-origin treat the resource being loaded as same origin
allow-scripts lets the loaded iframe run scripts (but not create popups).
allow-top-navigation gives access to the iframe to the top level browsing context

accelerometer gives access to the Sensors API Accelerometer interface
ambient-light-sensor gives access to the Sensors API AmbientLightSensor
interface
autoplay allows to autoplay video and audio files
camera allows to access the camera from the getUserMedia API
display-capture allows to access the screen content using the getDisplayMedia API
fullscreen allows to access fullscreen mode
geolocation allows to access the Geolocation API
gyroscope gives access to the Sensors API Gyroscope interface
magnetometer gives access to the Sensors API Magnetometer interface
microphone gives access to the device microphone using the getUserMedia API
midi allows access to the Web MIDI API
payment gives access to the Payment Request API
speaker allows access to playing audio through the device speakers
usb gives access to the WebUSB API.
vibrate gives access to the Vibration API
vr gives access to the WebVR API

af://h2-86
af://h2-87

The referrerpolicy attribute lets us set the referrer to send to the iframe when loading it.
The referrer is an HTTP header that lets the page know who is loading it. These are the
allowed values:

Accessibility
It’s important we design our HTML with accessibility in mind.

Having accessible HTML means that people with disabilities can use the Web. There are
totally blind or visually impaired users, people with hearing loss issues and a multitude of
other different disabilities.

Unfortunately this topic does not take the importance it needs, and it doesn’t seem as cool
as others.

What if a person can’t see your page, but still wants to consume its content? First, how do
they do that? They can’t use the mouse, they use something called a screen reader. You
don’t have to imagine that. You can try one now: Google provides the free ChromeVox
Chrome Extension. Accessibility must also take care of allowing tools to easily select
elements or navigate through the pages.

Web pages and Web apps are not always built with accessibility as one of their first goals,
and maybe version 1 is released not accessible but it’s possible to make a web page
accessible after the fact. Sooner is better, but it’s never too late.

no-referrer-when-downgrade it’s the default, and does not send the referrer when
the current page is loaded over HTTPS and the iframe loads on the HTTP protocol
no-referrer does not send the referrer header
origin the referrer is sent, and only contains the origin (port, protocol, domain), not
the origin + path which is the default
origin-when-cross-origin when loading from the same origin (port, protocol,
domain) in the iframe, the referrer is sent in its complete form (origin + path). Otherwise
only the origin is sent
same-origin the referrer is sent only when loading from the same origin (port,
protocol, domain) in the iframe
strict-origin sends the origin as the referrer if the current page is loaded over
HTTPS and the iframe also loads on the HTTPS protocol. Sends nothing if the iframe is
loaded over HTTP
strict-origin-when-cross-origin sends the origin + path as the referrer when
working on the same origin. Sends the origin as the referrer if the current page is
loaded over HTTPS and the iframe also loads on the HTTPS protocol. Sends nothing if
the iframe is loaded over HTTP
unsafe-url : sends the origin + path as the referrer even when loading resources from
HTTP and the current page is loaded over HTTPS

https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn/
af://h1-88

It’s important and in my country, websites built by the government or other public
organizations must be accessible.

What does this mean to make an HTML accessible? Let me illustrate the main things you
need to think about.

Note: there are several other things to take care about, which might go in the CSS topic,
like colors, contrast and fonts. Or how to make SVG images accessible. I don’t talk about
them here.

Use semantic HTML
Semantic HTML is very important and it’s one of the main things you need to take care of.
Let me illustrate a few common scenarios.

It’s important to use the correct structure for heading tags. The most important is h1 , and
you use higher numbers for less important ones, but all the same-level headings should
have the same meaning (think about it like a tree structure)

Use strong and em instead of b and i . Visually they look the same, but the first 2 have
more meaning associated with them. b and i are more visual elements.

Lists are important. A screen reader can detect a list and provide an overview, then let the
user choose to get into the list or not.

A table should have a caption tag that describes its content:

h1

h2

h3

h2

h2

h3

h4

<table>

 <caption>

 Dogs age

 </caption>

 <tr>

 <th>Dog</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>Roger</td>

 <td>7</td>

af://h2-89

Use alt attributes for images
All images must have an alt tag describing the image content. It’s not just a good practice,
it’s required by the HTML standard and your HTML without it is not validated.

It’s also good for search engines, if that’s an incentive for you to add it.

Use the role attribute
The role attribute lets you assign specific roles to the various elements in your page.

You can assign lots of different roles: complementary, list, listitem, main, navigation, region,
tab, alert, application, article, banner, button, cell, checkbox, contentinfo, dialog, document,
feed, figure, form, grid, gridcell, heading, img, listbox, row, rowgroup, search, switch, table,
tabpanel, textbox, timer.

It’s a lot and for the full reference of each of them I give you this MDN link. But you don’t
need to assign a role to every element in the page. Screen readers can infer from the HTML
tag in most cases. For example you don’t need to add a role tag to semantic tags like nav ,
button , form .

Let’s take the nav tag example. You can use it to define the page navigation like this:

If you were forced to use a div tag instead of nav , you’d use the navigation role:

 </tr>

</table>

<nav>

 Home

 Blog

</nav>

<div role="navigation">

 Home

 Blog

</div

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles
af://h2-90
af://h2-91

So here you got a practical example: role is used to assign a meaningful value when the
tag does not convey the meaning already.

Use the tabindex attribute
The tabindex attribute allows you to change the order of how pressing the Tab key selects
“selectable” elements. By defaults only links and form elements are “selectable” by
navigation using the Tab key (and you don’t need to set tabindex on them).

Adding tabindex="0" makes an element selectable:

Using tabindex="-1" instead removes an element from this tab-based navigation, and it
can be pretty useful.

Use the aria attributes
ARIA is an acronym that means Accessible Rich Internet Applications and defines semantics
that can be applied to elements.

aria-label

This attribute is used to add a string to describe an element.

Example:

I use this attribute on my blog sidebar, where I have an input box for search without an
explicit label, as it has a placeholder attribute.

aria-labelledby

This attribute sets a correlation between the current element and the one that labels it.

If you know how an input element can be associated to a label element, that’s similar.

We pass the item id that describes the current element.

Example:

aria-describedby

<div tabindex="0">...</div>

<p aria-label="The description of the product">...</p>

<h3 id="description">The description of the product</h3>

<p aria-labelledby="description">...</p>

af://h2-92
af://h2-93
af://h3-94
af://h3-95
af://h3-96

This attribute lets us associate an element with another element that serves as description.

Example:

Use aria-hidden to hide content

I like a minimalistic design in my sites. My blog for example is mostly just content, with some
links in the sidebar. But some things in the sidebar are just visual elements that don’t add up
to the experience of a person that can’t see the page. Like my logo picture, or the dark/bright
theme selector.

Adding the aria-hidden="true" attribute will tell screen readers to ignore that element.

<button aria-describedby="payNowDescription">Pay now</button>

<div id="payNowDescription">

 Clicking the button will send you to our Stripe form!

</div>

af://h3-97

	Preface
	Legal
	Preface
	HTML Basics
	HTML page structure
	Tags vs elements
	Attributes
	Case insensitive
	White space
	The document heading
	The title tag
	The script tag
	The noscript tag
	The link tag
	The style tag
	The base tag
	The meta tag

	The document body
	Block elements vs inline elements
	Tags that interact with text
	The p tag
	The span tag
	The br tag
	The heading tags
	The strong tag
	The em tag
	Quotes
	Horizontal line
	Code blocks
	Lists
	Other text tags

	Links
	Images
	The figure tag
	Responsive images using srcset
	The picture tag

	Container tags and page structure HTML
	Container tags
	article
	section
	div

	Tags related to page
	nav
	aside
	header
	main
	footer

	Forms
	The input tag
	Email
	Password
	Numbers
	Hidden field
	Setting a default value

	Form submit
	Form validation
	Set fields as required
	Enforce a specific format

	Other fields
	File uploads
	Buttons
	Radio buttons
	Checkboxes
	Date and time
	Color picker
	Range
	Telephone
	URL

	The textarea tag
	The select tag

	Tables
	The table tag
	Rows
	Column headers
	The table content
	Span columns and rows
	Row headings
	More tags to organize the table
	Table caption

	Multimedia tags: audio and video
	The audio tag
	The video tag

	iframes
	srcdoc
	Sandbox
	Allow
	Referrer

	Accessibility
	Use semantic HTML
	Use alt attributes for images
	Use the role attribute
	Use the tabindex attribute
	Use the aria attributes
	aria-label
	aria-labelledby
	aria-describedby
	Use aria-hidden to hide content

