
index

1 / 169

Preface
This book aims to be an introduction to the CSS fundamentals.

This book was first published in 2019 and has been updated for 2025.

Legal
Flavio Copes, 2025. All rights reserved.

Downloaded from flaviocopes.com.

No part of this book may be reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher.

The information in this book is for educational and informational purposes only and is not
intended as legal, financial, or other professional advice. The author and publisher make no
representations as to the accuracy, completeness, suitability, or validity of any information in
this book and will not be liable for any errors, omissions, or delays in this information or any
losses, injuries, or damages arising from its use.

This book is provided free of charge to the newsletter subscribers of Flavio Copes. It is for
personal use only. Redistribution, resale, or any commercial use of this book or any portion
of it is strictly prohibited without the prior written permission of the author.

If you wish to share a portion of this book, please provide proper attribution by crediting
Flavio Copes and including a link to flaviocopes.com.

Introduction
I wrote this book to help you quickly learn CSS and get familiar with the advanced CSS
topics.

CSS, a shorthand for Cascading Style Sheets, is one of the main building blocks of the Web.
Its history goes back to the 90’s and along with HTML it has changed a lot since its humble
beginnings.

CSS is an amazing tool, and in the last few years it has grown a lot.

This handbook is aimed at a vast audience.

First, the beginner. I explain CSS from zero in a succinct but comprehensive way, so you can
use this book to learn CSS from the basics.

Then, the professional. CSS is often considered like a secondary thing to learn, especially by
JavaScript developers. They know CSS is not a real programming language, they are

index

2 / 169

https://flaviocopes.com/
http://flaviocopes.com/
af://h1-1
af://h1-2
af://h1-3

programmers and therefore they should not bother learning CSS the right way. I wrote this
book for you, too.

Next, the person that has used CSS for a few years but hasn’t had the opportunity to learn
the fundamentals of it.

Even if you don’t write CSS for a living, knowing how CSS works can help save you some
headaches when you need to understand it from time to time, for example while tweaking a
web page.

How does CSS look like
CSS (an abbreviation of Cascading Style Sheets) is the language that we use to style an
HTML file, and tell the browser how should it render the elements on the page.

A CSS file contains several CSS rules.

Each rule is composed by 2 parts:

The selector is a string that identifies one or more elements on the page, following a special
syntax that we’ll soon talk about extensively.

The declaration block contains one or more declarations, in turn composed by a property
and value pair.

Those are all the things we have in CSS.

Carefully organizing properties, associating them values, and attaching those to specific
elements of the page using a selector is the whole argument of this ebook.

A CSS rule set has one part called selector, and the other part called declaration. The
declaration contains various rules, each composed by a property, and a value.

In this example, p is the selector, and applies one rule which sets the value 20px to the
font-size property:

A selector can target HTML tags or HTML elements that contain a certain class attribute with
.my-class , or HTML elements that have a specific id attribute with #my-id .

the selector
the declaration block

p {
 font-size: 20px;
}

index

3 / 169

af://h1-4

More advanced selectors allow you to choose items whose attribute matches a specific
value, or also items which respond to pseudo-classes (more on that later).

Every CSS rule terminates with a semicolon. Semicolons are not optional, except after the
last rule, but I suggest to always use them for consistency and to avoid errors if you add
another property and forget to add the semicolon on the previous line.

There is no fixed rule for formatting. This CSS is valid:

but a pain to see. Stick to some conventions, like the ones you see in the examples above:
stick selectors and the closing brackets to the left, indent 2 spaces for each rule, have the
opening bracket on the same line of the selector, separated by one space.

Correct and consistent use of spacing and indentation is a visual aid in understanding your
code.

A brief history of CSS
Before moving on, I want to give you a brief recap of the history of CSS.

CSS was grown out of the necessity of styling web pages. Before CSS was introduced,
people wanted a way to style their web pages, which looked all very similar and “academic”
back in the day. You couldn’t do much in terms of personalisation.

HTML 3.2 introduced the option of defining colors inline as HTML element attributes, and
presentational tags like center and font , but that escalated quickly into a far from ideal
situation.

CSS let us move everything presentation-related from the HTML to the CSS, so that HTML
could get back being the format that defines the structure of the document, rather than how
things should look in the browser.

CSS is continuously evolving, and CSS you used 5 years ago might just be outdated, as
new idiomatic CSS techniques emerged and browsers changed.

It’s hard to imagine the times when CSS was born and how different the web was.

At the time, we had several competing browsers, the main ones being Internet Explorer and
Netscape Navigator.

Pages were styled by using HTML, with special presentational tags like bold and special
attributes, most of which are now deprecated.

p {
 font-size: 20px;}
a {color: blue;}

index

4 / 169

af://h1-5

This meant you had a limited amount of customization opportunities.

The bulk of the styling decisions were left to the browser.

Also, you built a site specifically for one of them, because each one introduced different non-
standard tags to give more power and opportunities.

Soon people realized the need for a way to style pages, in a way that would work across all
browsers.

After the initial idea proposed in 1994, CSS got its first release in 1996, when the CSS Level
1 (“CSS 1”) recommendation was published.

CSS Level 2 (“CSS 2”) got published in 1998.

Since then, work began on CSS Level 3. The CSS Working Group decided to split every
feature and work on it separately, in modules.

Browsers weren't especially fast at implementing CSS in those early days. We had to wait
until 2002 to have the first browser implement the full CSS specification.

Historically, Internet Explorer implemented the box model incorrectly, which led to years of
compatibility issues across browsers. Modern browsers now have excellent CSS support
and standards compliance.

Today things are much, much better. We can just use the CSS standards without thinking
about quirks, most of the time, and CSS has never been more powerful.

We don’t have official release numbers for CSS any more now, but the CSS Working Group
releases a “snapshot” of the modules that are currently considered stable and ready to be
included in browsers. This is the latest snapshot, from 2023: https://www.w3.org/TR/css-
2023/

CSS Level 2 is still the base for the CSS we write today, and we have many more features
built on top of it.

Adding CSS to an HTML page
CSS is attached to an HTML page in different ways.

1: Using the link tag

The link tag is the way to include a CSS file. This is the preferred way to use CSS as it’s
intended to be used: one CSS file is included by all the pages of your site, and changing one
line on that file affects the presentation of all the pages in the site.

To use this method, you add a link tag with the href attribute pointing to the CSS file you
want to include. You add it inside the head tag of the site (not inside the body tag):

index

5 / 169

https://www.w3.org/TR/css-2023/
https://www.w3.org/TR/css-2023/
af://h1-6
af://h3-7

The rel and type attributes are required too, as they tell the browser which kind of file we
are linking to.

2: using the style tag

Instead of using the link tag to point to separate stylesheet containing our CSS, we can
add the CSS directly inside a style tag. This is the syntax:

Using this method we can avoid creating a separate CSS file. I find this is a good way to
experiment before “formalising” CSS to a separate file, or to add a special line of CSS just to
a file.

3: inline styles

Inline styles are the third way to add CSS to a page. We can add a style attribute to any
HTML tag, and add CSS into it.

Example:

Selectors
A selector allows us to associate one or more declarations to one or more elements on the
page.

Basic selectors

Suppose we have a p element on the page, and we want to display the words into it using
the yellow color.

We can target that element using this selector p , which targets all the element using the p
tag in the page. A simple CSS rule to achieve what we want is:

<link rel="stylesheet" type="text/css" href="myfile.css" />

<style>
...our CSS...;
</style>

<div style="">...</div>

<div style="background-color: yellow">...</div>

p {
 color: yellow;

index

6 / 169

af://h3-8
af://h3-9
af://h1-10
af://h3-11

Every HTML tag has a corresponding selector, for example: div , span , img .

If a selector matches multiple elements, all the elements in the page will be affected by the
change.

HTML elements have 2 attributes which are very commonly used within CSS to associate
styling to a specific element on the page: class and id .

There is one big difference between those two: inside an HTML document you can repeat
the same class value across multiple elements, but you can only use an id once. As a
corollary, using classes you can select an element with 2 or more specific class names,
something not possible using ids.

Classes are identified using the . symbol, while ids using the # symbol.

Example using a class:

Example using an id:

Combining selectors

So far we’ve seen how to target an element, a class or an id. Let’s introduce more powerful
selectors.

Targeting an element with a class or id

You can target a specific element that has a class, or id, attached.

Example using a class:

}

<p class="dog-name">Roger</p>

.dog-name {
 color: yellow;
}

<p id="dog-name">Roger</p>

#dog-name {
 color: yellow;
}

index

7 / 169

af://h3-12
af://h3-13

Example using an id:

Why would you want to do that, if the class or id already provides a way to target that
element? You might have to do that to have more specificity. We’ll see what that means later.

Targeting multiple classes

You can target an element with a specific class using .class-name , as you saw previously.
You can target an element with 2 (or more) classes by combining the class names separated
with a dot, without spaces.

Example:

Combining classes and ids

In the same way, you can combine a class and an id.

Example:

<p class="dog-name">Roger</p>

p.dog-name {
 color: yellow;
}

<p id="dog-name">Roger</p>

p#dog-name {
 color: yellow;
}

<p class="dog-name roger">Roger</p>

.dog-name.roger {
 color: yellow;
}

<p class="dog-name" id="roger">Roger</p>

.dog-name#roger {
 color: yellow;
}

index

8 / 169

af://h3-14
af://h3-15

Grouping selectors

You can combine selectors to apply the same declarations to multiple selectors. To do so,
you separate them with a comma.

Example:

If you want you can add spaces, or put those declarations on different lines, to make them
more clear:

Follow the document tree with selectors

We’ve seen how to target an element in the page by using a tag name, a class or an id.

You can create a more specific selector by combining multiple items to follow the document
tree structure. For example, if you have a span tag nested inside a p tag, you can target
that one without applying the style to a span tag not included in a p tag:

See how we used a space between the two tokens p and span .

<p>My dog name is:</p> Roger

p,.dog-name {
 color: yellow;
}

p,
.dog-name {
 color: yellow;
}

 Hello!

<p>
 My dog name is:

 Roger

</p>

p span {
 color: yellow;
}

index

9 / 169

af://h3-16
af://h3-17

This works even if the element on the right is multiple levels deep.

To make the dependency strict on the first level, you can use the > symbol between the two
tokens:

In this case, if a span is not a first children of the p element, it’s not going to have the new
color applied.

Direct children will have the style applied:

Adjacent sibling selectors let us style an element only if preceded by a specific element. We
do so using the + operator:

Example:

This will assign the color yellow to all span elements preceded by a p element:

We have a lot more selectors we can use:

We’ll find all about them in the next sections.

p > span {
 color: yellow;
}

<p>

 This is yellow

 This is not yellow

</p>

p + span {
 color: yellow;
}

<p>This is a paragraph</p>
This is a yellow span

attribute selectors

pseudo class selectors
pseudo element selectors

index

10 / 169

Cascade
Cascade is a fundamental concept of CSS. After all, it’s in the name itself, the first C of CSS
- Cascading Style Sheets - it must be an important thing.

What does it mean?

Cascade is the process, or algorithm, that determines the properties applied to each element
on the page. Trying to converge from a list of CSS rules that are defined in various places.

It does so taking in consideration:

It also takes care of resolving conflicts.

Two or more competing CSS rules for the same property applied to the same element need
to be elaborated according to the CSS spec, to determine which one needs to be applied.

Even if you just have one CSS file loaded by your page, there is other CSS that is going to
be part of the process. We have the browser (user agent) CSS. Browsers come with a
default set of rules, all different between browsers.

Then your CSS come into play.

Then the browser applies any user stylesheet, which might also be applied by browser
extensions.

All those rules come into play while rendering the page.

We’ll now see the concepts of specificity and inheritance.

Specificity
What happens when an element is targeted by multiple rules, with different selectors, that
affect the same property?

For example, let’s talk about this element:

We can have

specificity
importance

inheritance
order in the file

<p class="dog-name">Roger</p>

index

11 / 169

af://h1-18
af://h1-19

and another rule that targets p , which sets the color to another value:

And another rule that targets p.dog-name . Which rule is going to take precedence over the
others, and why?

Enter specificity. The more specific rule will win.
If two or more rules have the same specificity, the one that appears last wins.

Sometimes what is more specific in practice is a bit confusing to beginners. I would say it’s
also confusing to experts that do not look at those rules that frequently, or simply overlook
them.

How to calculate specificity
Specificity is calculated using a convention.

We have 4 slots, and each one of them starts at 0: 0 0 0 0 0 . The slot at the left is the
most important, and the rightmost one is the least important.

Like it works for numbers in the decimal system: 1 0 0 0 is higher than 0 1 0 0 .

Slot 1

The first slot, the rightmost one, is the least important.

We increase this value when we have an element selector. An element is a tag name. If
you have more than one element selector in the rule, you increment accordingly the value
stored in this slot.

Examples:

.dog-name {
 color: yellow;
}

p {
 color: red;
}

p {}
/* 0 0 0 1 */

span {}
/* 0 0 0 1 */

p span {}

index

12 / 169

af://h1-20
af://h3-21

Slot 2

The second slot is incremented by 3 things:

Every time a rule meets one of those, we increment the value of the second column from the
right.

Examples:

Of course slot 2 selectors can be combined with slot 1 selectors:

One nice trick with classes is that you can repeat the same class and increase the specificity.
For example:

/* 0 0 0 2 */

p > span {}
/* 0 0 0 2 */

div p > span {}
/* 0 0 0 3 */

class selectors
pseudo-class selectors

attribute selectors

.name {}
/* 0 0 1 0 */

.users .name {}
/* 0 0 2 0 */

[href$='.pdf'] {}
/* 0 0 1 0 */

:hover {}
/* 0 0 1 0 */

div .name {}
/* 0 0 1 1 */

a[href$='.pdf'] {}
/* 0 0 1 1 */

.pictures img:hover {}
/* 0 0 2 1 */

index

13 / 169

af://h3-22

Slot 3

Slot 3 holds the most important thing that can affect your CSS specificity in a CSS file: the
id .

Every element can have an id attribute assigned, and we can use that in our stylesheet to
target the element.

Examples:

Slot 4

Slot 4 is affected by inline styles. Any inline style will have precedence over any rule defined
in an external CSS file, or inside the style tag in the page header.

Example:

Even if any other rule in the CSS defines the color, this inline style rule is going to be
applied. Except for one case - if !important is used, which fills the slot 5.

Importance

Specificity does not matter if a rule ends with !important :

.name {}
/* 0 0 1 0 */

.name.name {}
/* 0 0 2 0 */

.name.name.name {}
/* 0 0 3 0 */

#name {}
/* 0 1 0 0 */

.user #name {}
/* 0 1 1 0 */

#name span {}
/* 0 1 0 1 */

<p style="color: red">Test</p>
/* 1 0 0 0 */

index

14 / 169

af://h3-23
af://h3-24
af://h3-25

That rule will take precedence over any rule with more specificity

Adding !important in a CSS rule is going to make that rule be more important than any
other rule, according to the specificity rules. The only way another rule can take precedence
is to have !important as well, and have higher specificity in the other less important slots.

Considerations on specificity

In general you should use the amount of specificity you need, but not more. In this way, you
can craft other selectors to overwrite the rules set by preceding rules without going mad.

!important is a highly debated tool that CSS offers us. Many CSS experts advocate
against using it. I find myself using it especially when trying out some style and a CSS rule
has so much specificity that I need to use !important to make the browser apply my new
CSS.

But generally, !important should have no place in your CSS files.

Using the id attribute to style CSS is also debated a lot, since it has a very high specificity.
A good alternative is to use classes instead, which have less specificity, and so they are
easier to work with, and they are more powerful (you can have multiple classes for an
element, and a class can be reused multiple times).

You can use the site https://specificity.keegan.st/ to perform the specificity calculation for you
automatically.

It’s useful especially if you are trying to figure things out, as it can be a nice feedback tool.

Inheritance
When you set some properties on a selector in CSS, they are inherited by all the children of
that selector.

I said some, because not all properties show this behaviour.

This happens because some properties make sense to be inherited. This helps us write CSS
much more concisely, since we don’t have to explicitly set that property again on every single
children.

Some other properties make more sense to not be inherited.

Think about fonts: you don’t need to apply the font-family to every single tag of your
page. You set the body tag font, and every children inherits it, along with other properties.

p {
 font-size: 20px !important;
}

index

15 / 169

https://specificity.keegan.st/
af://h3-26
af://h1-27

The background-color property, on the other hand, makes little sense to be inherited.

Properties that inherit

Here is a list of the properties that do inherit. The list is non-comprehensive, but those rules
are just the most popular ones you’ll likely use:

border-collapse

border-spacing

caption-side

color

cursor

direction

empty-cells

font-family

font-size

font-style

font-variant

font-weight

font-size-adjust

font-stretch

font

letter-spacing

line-height

list-style-image

list-style-position

list-style-type

list-style

orphans

quotes

tab-size

text-align

text-align-last

text-decoration-color

text-indent

text-justify

text-shadow

text-transform

visibility

white-space

widows

index

16 / 169

af://h3-28

Forcing properties to inherit

What if you have a property that’s not inherited by default, and you want it to, in a children?

In the children, you set the property value to the special keyword inherit .

Example:

Forcing properties to NOT inherit

On the contrary, you might have a property inherited and you want to avoid so.

You can use the revert keyword to revert it. In this case, the value is reverted to the
original value the browser gave it in its default stylesheet.

In practice this is rarely used, and most of the times you’ll just set another value for the
property to overwrite that inherited value.

Other special values

In addition to the inherit and revert special keywords we just saw, you can also set any
property to:

Import
From any CSS file you can import another CSS file using the @import directive.

Here is how you use it:

word-break

word-spacing

body {
 background-color: yellow;
}

p {
 background-color: inherit;
}

initial : use the default browser stylesheet if available. If not, and if the property
inherits by default, inherit the value. Otherwise do nothing.
unset : if the property inherits by default, inherit. Otherwise do nothing.

@import url(myfile.css);

index

17 / 169

af://h3-29
af://h3-30
af://h3-31
af://h1-32

url() can manage absolute or relative URLs.

One important thing you need to know is that @import directives must be put before any
other CSS in the file, or they will be ignored.

You can use media descriptors to only load a CSS file on the specific media:

CSS Nesting
CSS Nesting is now natively supported in all modern browsers, allowing you to write more
maintainable and organized styles without a preprocessor like Sass or Less.

Nesting lets you write child selectors inside their parent's rule block, making the relationship
between styles clearer and reducing repetition. This feature significantly improves code
organization and readability.

Basic Nesting Syntax
You can nest selectors directly inside their parent rules:

@import url(myfile.css) all;
@import url(myfile-screen.css) screen;
@import url(myfile-print.css) print;

/* Traditional CSS */
.card {
 padding: 1rem;
 background: white;
}
.card h2 {
 color: navy;
 font-size: 1.5rem;
}
.card p {
 color: gray;
 line-height: 1.6;
}

/* With CSS Nesting */
.card {
 padding: 1rem;
 background: white;

 h2 {
 color: navy;
 font-size: 1.5rem;
 }

index

18 / 169

af://h1-33
af://h2-34

The nested version groups related styles together, making it immediately clear that h2 and
p styles apply only within .card .

Using the & Selector
The & symbol represents the parent selector and is required for certain nesting patterns:

This compiles to .button:hover , .button:active , .button.large , and
.button.disabled .

Complex Nesting Examples
Nesting can go multiple levels deep and combine various selectors:

 p {
 color: gray;
 line-height: 1.6;
 }
}

.button {
 background: blue;
 color: white;

 /* Pseudo-classes need & */
 &:hover {
 background: darkblue;
 }

 &:active {
 transform: scale(0.98);
 }

 /* Modifier classes */
 &.large {
 padding: 1rem 2rem;
 font-size: 1.2rem;
 }

 &.disabled {
 opacity: 0.5;
 cursor: not-allowed;
 }
}

index

19 / 169

af://h2-35
af://h2-36

Media Queries and Container Queries in Nesting
You can nest media queries and container queries directly inside rules:

nav {
 background: #333;
 padding: 1rem;

 ul {
 list-style: none;
 display: flex;
 gap: 2rem;

 li {
 position: relative;

 a {
 color: white;
 text-decoration: none;

 &:hover {
 color: #66b3ff;
 }
 }

 /* Dropdown menu */
 &:has(.dropdown) {
 > a::after {
 content: ' ▼';
 font-size: 0.8em;
 }
 }

 .dropdown {
 display: none;
 position: absolute;
 top: 100%;
 background: #444;

 /* Show on hover */
 @nest li:hover & {
 display: block;
 }
 }
 }
 }
}

index

20 / 169

af://h2-37

CSS Cascade Layers
CSS Cascade Layers give you more control over the cascade, allowing you to organize your
CSS into layers with explicit ordering. Think of layers like transparent sheets stacked on top
of each other - you can control which sheet is on top and therefore which styles win when
there are conflicts.

This feature solves a common problem in CSS: managing the specificity and order of styles
from different sources (reset styles, third-party libraries, your own utilities, and component
styles). Instead of fighting with specificity or using !important , you can organize your CSS
into logical layers.

Creating and Using Layers

You can create layers using the @layer at-rule:

.card {
 padding: 1rem;
 background: white;

 @media (min-width: 768px) {
 padding: 2rem;
 display: grid;
 grid-template-columns: 1fr 2fr;
 }

 @container (min-width: 400px) {
 h2 {
 font-size: 2rem;
 }
 }
}

/* Define layer order first */
@layer reset, base, components, utilities;

/* Add styles to layers */
@layer reset {
 * {
 margin: 0;
 padding: 0;
 box-sizing: border-box;
 }
}

@layer base {
 body {

index

21 / 169

af://h2-38
af://h3-39

The power of layers is that styles in later layers automatically override styles in earlier layers,
regardless of specificity. In the example above, a utility class will always override a
component style, even if the component has higher specificity. This makes your CSS more
predictable and easier to maintain.

Anonymous and Nested Layers

You can create anonymous layers (without names) and nest layers inside other layers:

 font-family: system-ui, sans-serif;
 line-height: 1.5;
 color: #333;
 }
}

@layer components {
 .button {
 background: blue;
 color: white;
 padding: 0.5rem 1rem;
 border-radius: 4px;
 }
}

@layer utilities {
 .text-center {
 text-align: center;
 }

 .mt-4 {
 margin-top: 1rem;
 }
}

/* Anonymous layer */
@layer {
 .special-element {
 background: yellow;
 }
}

/* Nested layers */
@layer framework {
 @layer defaults {
 input {
 border: 1px solid #ccc;
 }
 }

index

22 / 169

af://h3-40

Anonymous layers are useful for one-off overrides, while nested layers help organize related
styles into sub-categories. Nested layers are referenced using dot notation, like
framework.defaults and framework.theme .

Importing into Layers

You can import external stylesheets directly into layers:

This is incredibly useful when working with third-party CSS. You can put their styles in a
lower layer, ensuring your custom styles always win without specificity battles.

CSS Logical Properties
CSS Logical Properties replace physical directions (left, right, top, bottom) with logical ones
that adapt to different writing modes and text directions. This is essential for international
websites that need to support languages like Arabic or Hebrew (right-to-left) or Japanese
(vertical writing).

Instead of thinking in terms of "left" and "right", logical properties use "start" and "end" based
on the text flow direction. Similarly, instead of "top" and "bottom", they use "block-start" and
"block-end".

Common Logical Properties

Here are the most commonly used logical properties and their physical equivalents:

 @layer theme {
 input {
 border-color: blue;
 }
 }
}

/* Import external styles into specific layers */
@import url('reset.css') layer(reset);
@import url('theme.css') layer(theme);
@import url('utilities.css') layer(utilities);

/* Or define the order and import */
@layer reset, theme, components, utilities;
@import url('components.css') layer(components);

/* Traditional physical properties */
.old-way {
 margin-left: 20px;
 margin-right: 20px;

index

23 / 169

af://h3-41
af://h2-42
af://h3-43

When the page direction changes (for example, when switching to Arabic), the logical
properties automatically adapt. The margin-inline-start that was on the left in English
will be on the right in Arabic, without changing your CSS.

Shorthand Logical Properties

Just like physical properties, logical properties have convenient shorthands:

These shorthands make your code cleaner while maintaining international compatibility.
They work exactly like their physical counterparts but adapt to different writing modes
automatically.

 padding-top: 10px;
 padding-bottom: 10px;
 border-left: 2px solid blue;
 width: 200px;
 height: 100px;
}

/* Modern logical properties */
.new-way {
 margin-inline-start: 20px; /* replaces margin-left in LTR */
 margin-inline-end: 20px; /* replaces margin-right in LTR */
 padding-block-start: 10px; /* replaces padding-top */
 padding-block-end: 10px; /* replaces padding-bottom */
 border-inline-start: 2px solid blue; /* replaces border-left in LTR */
 inline-size: 200px; /* replaces width */
 block-size: 100px; /* replaces height */
}

.element {
 /* Inline axis (horizontal in LTR/RTL) */
 margin-inline: 20px; /* start and end */
 margin-inline: 20px 40px; /* start, then end */
 padding-inline: 10px 15px;

 /* Block axis (vertical in LTR/RTL) */
 margin-block: 30px; /* start and end */
 margin-block: 30px 60px; /* start, then end */
 padding-block: 20px 25px;

 /* Size properties */
 inline-size: 300px; /* width in horizontal writing */
 block-size: 200px; /* height in horizontal writing */
 min-inline-size: 100px; /* min-width */
 max-block-size: 500px; /* max-height */
}

index

24 / 169

af://h3-44

Logical Values for Positioning

Logical properties also extend to positioned elements:

The inset property is particularly powerful as it combines all four positioning values in one
declaration, following the logical flow of block-start, inline-end, block-end, and inline-start.

Modern Color Spaces and Functions
CSS has evolved far beyond simple hex colors and RGB values. Modern CSS offers
sophisticated color spaces and functions that give you more control over colors, better
accessibility, and more intuitive color manipulation.

The new color capabilities include perceptually uniform color spaces (where equal numeric
changes create equal visual changes), wide-gamut colors for modern displays, and functions
that make color manipulation easier and more predictable.

The oklch() Color Space

The oklch() function represents colors using Lightness, Chroma (saturation), and Hue. This
color space is perceptually uniform, meaning a 10% change in lightness looks like a 10%
change regardless of the starting color:

.popup {
 position: absolute;

 /* Old way */
 top: 0;
 right: 0;

 /* Logical way */
 inset-block-start: 0; /* top in horizontal writing */
 inset-inline-end: 0; /* right in LTR, left in RTL */

 /* Or use the shorthand */
 inset: 0 0 auto auto; /* block-start inline-end block-end inline-start
*/
}

.content {
 /* oklch(lightness chroma hue) */
 background: oklch(90% 0.1 250); /* Light blue */
 color: oklch(30% 0.2 250); /* Dark blue */

 /* Easy to create color variations */
 --primary: oklch(60% 0.3 250);
 --primary-light: oklch(80% 0.2 250); /* Increase lightness, decrease

index

25 / 169

af://h3-45
af://h2-46
af://h3-47

The beauty of oklch() is that you can create harmonious color palettes by keeping the
lightness and chroma consistent while only changing the hue. This creates colors that feel
like they belong together.

The color-mix() Function

The color-mix() function lets you blend two colors together, which is perfect for creating tints,
shades, and color variations:

The color-mix() function is incredibly useful for creating hover states, disabled states, or
generating entire color schemes from a base color. The choice of color space affects how
the colors are interpolated, with oklch often producing more pleasing results.

Wide-Gamut Colors with display-p3

Modern displays can show colors beyond the traditional sRGB range. The display-p3 color
space lets you use these vibrant colors:

saturation */
 --primary-dark: oklch(40% 0.3 250); /* Decrease lightness only */

 /* Create a whole palette from one hue */
 --blue: oklch(60% 0.3 250);
 --green: oklch(60% 0.3 140);
 --red: oklch(60% 0.3 30);
}

.variations {
 --brand-color: #0066cc;

 /* Mix with white for tints */
 background: color-mix(in srgb, var(--brand-color) 80%, white);

 /* Mix with black for shades */
 border-color: color-mix(in srgb, var(--brand-color) 70%, black);

 /* Mix two colors together */
 accent-color: color-mix(in srgb, blue 60%, purple 40%);

 /* Use different color spaces for different results */
 --smooth-mix: color-mix(in oklch, red, blue);
 --vibrant-mix: color-mix(in srgb, red, blue);
}

.vibrant {
 /* Fallback for older browsers */
 background: rgb(255, 0, 0);

index

26 / 169

af://h3-48
af://h3-49

Wide-gamut colors are especially noticeable with vibrant reds, greens, and blues. They
make images and designs pop on modern displays while gracefully falling back on older
screens.

CSS Custom Properties Throughout
CSS Custom Properties (also called CSS Variables) should be used throughout modern
CSS for maintainability and dynamic styling. Unlike preprocessor variables, CSS custom
properties can be changed at runtime and participate in the cascade.

Custom properties transform how we write CSS by enabling theming, responsive design
patterns, and dynamic calculations that were previously impossible without JavaScript.

Basic Usage and Patterns

Custom properties are defined with a double dash prefix and accessed using the var()
function:

 /* Wide-gamut color for modern displays */
 background: color(display-p3 1 0 0);

 /* Use @supports to provide enhanced colors */
 @supports (color: color(display-p3 1 0 0)) {
 background: color(display-p3 1 0 0); /* More vibrant red */
 color: color(display-p3 0 1 0); /* More vibrant green */
 }
}

:root {
 /* Define global design tokens */
 --primary-color: oklch(60% 0.3 250);
 --secondary-color: oklch(60% 0.3 140);
 --text-color: oklch(20% 0.02 250);
 --background: oklch(98% 0.01 250);

 /* Spacing scale */
 --space-xs: 0.25rem;
 --space-sm: 0.5rem;
 --space-md: 1rem;
 --space-lg: 2rem;
 --space-xl: 4rem;

 /* Typography scale */
 --font-size-sm: clamp(0.875rem, 0.8rem + 0.25vw, 0.95rem);
 --font-size-base: clamp(1rem, 0.9rem + 0.5vw, 1.125rem);
 --font-size-lg: clamp(1.25rem, 1.1rem + 0.75vw, 1.5rem);
 --font-size-xl: clamp(1.5rem, 1.3rem + 1vw, 2rem);

index

27 / 169

af://h2-50
af://h3-51

The var() function accepts a second parameter as a fallback value, which is used if the
custom property isn't defined. This ensures your styles don't break if a variable is missing.

Dynamic Theming with Custom Properties

Custom properties enable instant theme switching without reloading:

}

.component {
 /* Use the properties */
 color: var(--text-color);
 padding: var(--space-md);
 font-size: var(--font-size-base);

 /* Provide fallbacks */
 background: blue;
 background: var(--primary-color, blue);
}

/* Light theme (default) */
:root {
 --bg-primary: oklch(98% 0.01 250);
 --bg-secondary: oklch(95% 0.02 250);
 --text-primary: oklch(20% 0.02 250);
 --text-secondary: oklch(40% 0.02 250);
 --accent: oklch(60% 0.3 250);
}

/* Dark theme */
[data-theme="dark"] {
 --bg-primary: oklch(15% 0.02 250);
 --bg-secondary: oklch(20% 0.02 250);
 --text-primary: oklch(95% 0.01 250);
 --text-secondary: oklch(75% 0.01 250);
 --accent: oklch(70% 0.3 250);
}

/* Components use the variables */
.card {
 background: var(--bg-secondary);
 color: var(--text-primary);
 border: 1px solid var(--accent);
}

/* JavaScript switches themes */
/* document.documentElement.setAttribute('data-theme', 'dark'); */

index

28 / 169

af://h3-52

This pattern allows users to switch themes instantly, with all components automatically
updating their colors. The theme preference can be saved to localStorage and restored on
page load.

Component-Scoped Properties

Custom properties can be scoped to components for modular, reusable styles:

Best Practices for CSS Nesting

.button {
 /* Component variables with defaults */
 --button-bg: var(--primary-color, blue);
 --button-color: white;
 --button-padding: 0.5rem 1rem;
 --button-radius: 4px;
 --button-hover-bg: color-mix(in oklch, var(--button-bg) 80%, black);

 /* Apply the variables */
 background: var(--button-bg);
 color: var(--button-color);
 padding: var(--button-padding);
 border-radius: var(--button-radius);
 transition: background-color 0.3s;

 &:hover {
 background: var(--button-hover-bg);
 }
}

/* Variations just override the variables */
.button--large {
 --button-padding: 0.75rem 1.5rem;
 font-size: 1.125rem;
}

.button--danger {
 --button-bg: oklch(55% 0.3 30);
 --button-hover-bg: oklch(45% 0.3 30);
}

.button--ghost {
 --button-bg: transparent;
 --button-color: var(--primary-color);
 border: 2px solid var(--primary-color);
}

1. Don't nest too deeply - More than 3 levels becomes hard to read

index

29 / 169

af://h3-53
af://h2-54

CSS Nesting makes stylesheets more maintainable by keeping related rules together and
reducing selector repetition. It's particularly useful for component-based styling where all
styles for a component can be grouped in one place.

Attribute selectors
We already introduced several of the basic CSS selectors: using element selectors, class, id,
how to combine them, how to target multiple classes, how to style several selectors in the
same rule, how to follow the page hierarchy with child and direct child selectors, and
adjacent siblings.

2. Use & for clarity - Even when optional, & makes parent references explicit

3. Group related styles - Keep modifiers and states near their base styles
4. Consider specificity - Nesting increases specificity, which can make overrides harder

/* Good - Clear and not too deep */
.article {
 padding: 2rem;

 h1 {
 font-size: 2rem;
 margin-bottom: 1rem;
 }

 .meta {
 color: #666;
 font-size: 0.9rem;

 time {
 font-weight: bold;
 }
 }
}

/* Avoid - Too deeply nested */
.article {
 .content {
 .section {
 .paragraph {
 .text {
 /* This is too deep! */
 }
 }
 }
 }
}

index

30 / 169

af://h1-55

In this section we’ll analyze attribute selectors, and we’ll talk about pseudo class and pseudo
element selectors in the next 2 sections.

Attribute presence selectors

The first selector type is the attribute presence selector.

We can check if an element has an attribute using the [] syntax. p[id] will select all p
tags in the page that have an id attribute, regardless of its value:

Exact attribute value selectors

Inside the brackets you can check the attribute value using = , and the CSS will be applied
only if the attribute matches the exact value specified:

Match an attribute value portion

While = let us check for exact value, we have other operators:

All the checks we mentioned are case sensitive.

If you add an i just before the closing bracket, the check will be case insensitive. This is
now widely supported across all modern browsers.

Pseudo-classes
Pseudo classes are predefined keywords that are used to select an element based on its
state, or to target a specific child.

p[id] {
 /* ... */
}

p[id='my-id'] {
 /* ... */
}

= checks if the attribute contains the partial
^= checks if the attribute starts with the partial

$= checks if the attribute ends with the partial
|= checks if the attribute starts with the partial and it’s followed by a dash (common in
classes, for example), or just contains the partial
~= checks if the partial is contained in the attribute, but separated by spaces from the
rest

index

31 / 169

af://h3-56
af://h3-57
af://h3-58
af://h1-59

They start with a single colon : .

They can be used as part of a selector, and they are very useful to style active or visited
links for example, change the style on hover, focus, or target the first child, or odd rows. Very
handy in many cases.

These are the most popular pseudo classes you will likely use:

Pseudo class Targets

:active an element being activated by the user (e.g. clicked). Mostly used on
links or buttons

:checked a checkbox, option or radio input types that are enabled

:default the default in a set of choices (like, option in a select or radio buttons)

:disabled an element disabled

:empty an element with no children

:enabled an element that’s enabled (opposite to :disabled)

:first-child the first child of a group of siblings

:focus the element with focus

:hover an element hovered with the mouse

:last-child the last child of a group of siblings

:link a link that’s not been visited

:not() any element not matching the selector passed. E.g. :not(span)

:nth-child() an element matching the specified position

:nth-last-
child()

an element matching the specific position, starting from the end

:only-child an element without any siblings

:required a form element with the required attribute set

:root represents the html element. It’s like targeting html , but it’s more
specific. Useful in CSS Variables.

:target the element matching the current URL fragment (for inner navigation
in the page)

:valid form elements that validated client-side successfully

:visited a link that’s been visited

Let’s do an example. A common one, actually. You want to style a link, so you create a CSS
rule to target the a element:

a {
 color: yellow;

index

32 / 169

https://flaviocopes.com/css-variables/

Things seem to work fine, until you click one link. The link goes back to the predefined color
(blue) when you click it. Then when you open the link and go back to the page, now the link
is blue.

Why does that happen?

Because the link when clicked changes state, and goes in the :active state. And when it’s
been visited, it is in the :visited state. Forever, until the user clears the browsing history.

So, to correctly make the link yellow across all states, you need to write

:nth-child() deserves a special mention. It can be used to target odd or even children
with :nth-child(odd) and :nth-child(even) .

It is commonly used in lists to color odd lines differently from even lines:

You can also use it to target the first 3 children of an element with :nth-child(-n+3) . Or
you can style 1 in every 5 elements with :nth-child(5n) .

Some pseudo classes are just used for printing, like :first , :left , :right , so you can
target the first page, all the left pages, and all the right pages, which are usually styled
slightly differently.

Modern Selectors
CSS has evolved with powerful new selectors that make complex selections much easier.
These modern selectors are now widely supported across all major browsers.

The :has() Selector
The :has() selector, often called the "parent selector," allows you to select elements based
on their descendants. This was a long-awaited feature in CSS.

}

a,
a:visited,
a:active {
 color: yellow;
}

ul:nth-child(odd) {
 color: white;
 background-color: black;
}

index

33 / 169

af://h1-60
af://h2-61

Think of :has() as asking "does this element contain something specific?" For example,
you might want to style an article differently if it contains images, or highlight a form that has
validation errors. Before :has() , this was impossible with CSS alone - you needed
JavaScript to check if an element contained certain children and then add classes. Now CSS
can do this natively.

This rule finds all <article> elements that have at least one element inside them,
and gives them a blue border. This is incredibly useful for responsive layouts where you
might want image-containing articles to have different spacing or backgrounds.

Here we're selecting any form that contains an invalid input field. When a user enters invalid
data (like an email without an @ symbol in an email field), the entire form gets a light red
background, providing immediate visual feedback that something needs attention.

This creates a todo-list effect: when a checkbox inside a list item is checked, the entire list
item gets a strikethrough and becomes semi-transparent. The magic is that we're styling the
parent based on the state of its child checkbox.

This styles any card that contains a premium badge with a gold border. It's perfect for e-
commerce sites where premium products need special visual treatment.

You can also use :has() to select based on following siblings:

/* Select articles that contain images */
article:has(img) {
 border: 2px solid blue;
}

/* Select forms with invalid inputs */
form:has(input:invalid) {
 background-color: #fee;
}

/* Select list items that have checked checkboxes */
li:has(input[type="checkbox"]:checked) {
 text-decoration: line-through;
 opacity: 0.6;
}

/* Select containers that have a specific child */
.card:has(.premium-badge) {
 border-color: gold;
}

index

34 / 169

This reduces the margin under any <h1> heading that's immediately followed by a
paragraph, creating tighter, more visually connected text blocks.

The :is() Selector
The :is() selector allows you to group multiple selectors, reducing repetition and making
your CSS more maintainable. It takes the specificity of its most specific argument.

Imagine you're writing CSS and find yourself repeating the same selectors over and over.
The :is() selector solves this by letting you group them together. It's like saying "any of
these" in a compact way. This not only makes your CSS shorter but also easier to read and
maintain.

This example shows the power of :is() . Instead of writing six separate selectors for all
combinations of article/section with h1/h2/h3, we can express it in one line. The rule applies
to any h1, h2, or h3 that's inside either an article or section element.

Here we're saying "when a button is in any of these states (hovered, focused, or active), give
it a dark blue background." This is much cleaner than writing three separate rules or a long
comma-separated selector list.

/* Select h1 that is immediately followed by a paragraph */
h1:has(+ p) {
 margin-bottom: 0.5rem;
}

/* Instead of writing this: */
article h1,
article h2,
article h3,
section h1,
section h2,
section h3 {
 color: blue;
}

/* You can write this: */
:is(article, section) :is(h1, h2, h3) {
 color: blue;
}

/* Styling multiple states */
button:is(:hover, :focus, :active) {
 background-color: darkblue;
}

index

35 / 169

af://h2-62

This advanced example removes margins from paragraphs that are either the first or last
child, but only when they're inside a header, main, or footer element. Without :is() , you'd
need to write six different selector combinations!

The :where() Selector
The :where() selector works exactly like :is() , but with zero specificity. This makes it
perfect for creating default styles that are easy to override.

The key difference between :is() and :where() :

The :not() Selector (Enhanced)
While :not() has been around for a while, modern CSS allows complex selectors inside
:not() :

/* Complex selections simplified */
:is(header, main, footer) p:is(:first-child, :last-child) {
 margin: 0;
}

/* Base styles with zero specificity */
:where(h1, h2, h3, h4, h5, h6) {
 color: #333;
 line-height: 1.2;
}

/* These can be easily overridden */
.special h1 {
 color: blue; /* This will win due to higher specificity */
}

/* Resetting list styles */
:where(ul, ol) {
 list-style: none;
 padding: 0;
 margin: 0;
}

:is() takes the specificity of its most specific selector
:where() always has zero specificity

/* Select all inputs except checkboxes and radios */
input:not([type="checkbox"], [type="radio"]) {
 width: 100%;
}

index

36 / 169

af://h2-63
af://h2-64

These modern selectors significantly reduce the amount of CSS you need to write and make
your stylesheets more maintainable.

Pseudo-elements
Pseudo-elements are used to style a specific part of an element.

They start with a double colon :: .

Sometimes you will spot them in the wild with a single colon, but this is only a syntax
supported for backwards compatibility reasons. You should use 2 colons to distinguish
them from pseudo-classes.

::before and ::after are probably the most used pseudo-elements. They are used to
add content before or after an element, like icons for example.

Here’s the list of the pseudo-elements:

Pseudo-element Targets

::after creates a pseudo-element after the element

::before creates a pseudo-element before the element

::first-letter can be used to style the first letter of a block of text

::first-line can be used to style the first line of a block of text

::selection targets the text selected by the user

Let’s do an example. Say you want to make the first line of a paragraph slightly bigger in font
size, a common thing in typography:

Or maybe you want the first letter to be bolder:

/* Select all list items except the last one */
li:not(:last-child) {
 border-bottom: 1px solid #ccc;
}

/* Complex combinations */
.card:not(:hover, :focus-within) {
 opacity: 0.8;
}

p::first-line {
 font-size: 2rem;
}

index

37 / 169

af://h1-65

::after and ::before are a bit less intuitive. I remember using them when I had to add
icons using CSS.

You specify the content property to insert any kind of content after or before an element:

Colors
By default an HTML page is rendered by web browsers quite sadly in terms of the colors
used.

We have a white background, black color, and blue links. That’s it.

Luckily CSS gives us the ability to add colors to our designs.

We have these properties:

All of them accept a color value, which can be in different forms.

Named colors

First, we have CSS keywords that define colors. CSS started with 16, but today there is a
huge number of colors names:

p::first-letter {
 font-weight: bolder;
}

p::before {
 content: url(/myimage.png);
}

.myElement::before {
 content: 'Hey Hey!';
}

color

background-color

border-color

aliceblue

antiquewhite

aqua

aquamarine

azure

beige

index

38 / 169

af://h1-66
af://h3-67

bisque

black

blanchedalmond

blue

blueviolet

brown

burlywood

cadetblue

chartreuse

chocolate

coral

cornflowerblue

cornsilk

crimson

cyan

darkblue

darkcyan

darkgoldenrod

darkgray

darkgreen

darkgrey

darkkhaki

darkmagenta

darkolivegreen

darkorange

darkorchid

darkred

darksalmon

darkseagreen

darkslateblue

darkslategray

darkslategrey

darkturquoise

darkviolet

deeppink

deepskyblue

dimgray

dimgrey

dodgerblue

index

39 / 169

firebrick

floralwhite

forestgreen

fuchsia

gainsboro

ghostwhite

gold

goldenrod

gray

green

greenyellow

grey

honeydew

hotpink

indianred

indigo

ivory

khaki

lavender

lavenderblush

lawngreen

lemonchiffon

lightblue

lightcoral

lightcyan

lightgoldenrodyellow

lightgray

lightgreen

lightgrey

lightpink

lightsalmon

lightseagreen

lightskyblue

lightslategray

lightslategrey

lightsteelblue

lightyellow

lime

limegreen

index

40 / 169

linen

magenta

maroon

mediumaquamarine

mediumblue

mediumorchid

mediumpurple

mediumseagreen

mediumslateblue

mediumspringgreen

mediumturquoise

mediumvioletred

midnightblue

mintcream

mistyrose

moccasin

navajowhite

navy

oldlace

olive

olivedrab

orange

orangered

orchid

palegoldenrod

palegreen

paleturquoise

palevioletred

papayawhip

peachpuff

peru

pink

plum

powderblue

purple

rebeccapurple

red

rosybrown

royalblue

index

41 / 169

plus tranparent , and currentColor which points to the color property, for example
useful to make the border-color inherit it.

They are defined in the CSS Color Module, Level 4. They are case insensitive.

Wikipedia has a nice table which lets you pick the perfect color by its name.

Named colors are not the only option.

RGB and RGBa

You can use the rgb() function to calculate a color from its RGB notation, which sets the
color based on its red-green-blue parts. From 0 to 255:

saddlebrown

salmon

sandybrown

seagreen

seashell

sienna

silver

skyblue

slateblue

slategray

slategrey

snow

springgreen

steelblue

tan

teal

thistle

tomato

turquoise

violet

wheat

white

whitesmoke

yellow

yellowgreen

p {
 color: rgb(255, 255, 255); /* white */

index

42 / 169

https://www.w3.org/TR/css-color-4/
https://en.wikipedia.org/wiki/Web_colors
af://h3-68

rgba() lets you add the alpha channel to enter a transparent part. That can be a number
from 0 to 1:

Hexadecimal notation

Another option is to express the RGB parts of the colors in the hexadecimal notation, which
is composed by 3 blocks.

Black, which is rgb(0,0,0) is expressed as #000000 or #000 (we can shortcut the 2
numbers to 1 if they are equal).

White, rgb(255,255,255) can be expressed as #ffffff or #fff .

The hexadecimal notation lets express a number from 0 to 255 in just 2 digits, since they can
go from 0 to “15” (f).

We can add the alpha channel by adding 1 or 2 more digits at the end, for example
#00000033 . Not all browsers support the shortened notation, so use all 6 digits to express
the RGB part.

HSL and HSLa

This is a more recent addition to CSS.

HSL = Hue Saturation Lightness.

In this notation, black is hsl(0, 0%, 0%) and white is hsl(0, 0%, 100%) .

If you are more familiar with HSL than RGB because of your past knowledge, you can
definitely use that.

You also have hsla() which adds the alpha channel to the mix, again a number from 0 to
1: hsl(0, 0%, 0%, 0.5)

Units
One of the things you’ll use every day in CSS are units. They are used to set lengths,
paddings, margins, align elements and so on.

Things like px , em , rem , or percentages.

 background-color: rgb(0, 0, 0); /* black */
}

p {
 background-color: rgba(0, 0, 0, 0.5);
}

index

43 / 169

af://h3-69
af://h3-70
af://h1-71

They are everywhere. There are some obscure ones, too. We’ll go through each of them in
this section.

Pixels

The most widely used measurement unit. A pixel does not actually correlate to a physical
pixel on your screen, as that varies, a lot, by device (think high-DPI devices vs non-retina
devices).

There is a convention that make this unit work consistently across devices.

Percentages

Another very useful measure, percentages let you specify values in percentages of that
parent element’s corresponding property.

Example:

Real-world measurement units

We have those measurement units which are translated from the outside world. Mostly
useless on screen, they can be useful for print stylesheets. They are:

Relative units

.parent {
 width: 400px;
}

.child {
 width: 50%; /* = 200px */
}

cm a centimeter (maps to 37.8 pixels)
mm a millimeter (0.1cm)

q a quarter of a millimeter
in an inch (maps to 96 pixels)
pt a point (1 inch = 72 points)
pc a pica (1 pica = 12 points)

em is the value assigned to that element’s font-size , therefore its exact value
changes between elements. It does not change depending on the font used, just on the
font size. In typography this measures the width of the m letter.
rem is similar to em , but instead of varying on the current element font size, it uses the
root element (html) font size. You set that font size once, and rem will be a consistent

index

44 / 169

af://h3-72
af://h3-73
af://h3-74
af://h3-75

Viewport units

Fraction units

fr are fraction units, and they are used in CSS Grid to divide space into fractions.

We’ll talk about them in the context of CSS Grid later on.

url()
When we talk about background images, @import , and more, we use the url() function to
load a resource:

In this case I used a relative URL, which searches the file in the folder where the CSS file is
defined.

I could go one level back

or go into a folder

measure across all the page.
ex is like em , but inserted of measuring the width of m , it measures the height of the x
letter. It can change depending on the font used, and on the font size.

ch is like ex but instead of measuring the height of x it measures the width of 0
(zero).

vw the viewport width unit represents a percentage of the viewport width. 50vw
means 50% of the viewport width.
vh the viewport height unit represents a percentage of the viewport height. 50vh
means 50% of the viewport height.
vmin the viewport minimum unit represents the minimum between the height or width
in terms of percentage. 30vmin is the 30% of the current width or height, depending
which one is smaller

vmax the viewport maximum unit represents the maximum between the height or
width in terms of percentage. 30vmax is the 30% of the current width or height,
depending which one is bigger

div {
 background-image: url(test.png);
}

div {
 background-image: url(../test.png);
}

index

45 / 169

af://h3-76
af://h3-77
af://h1-78

Or I could load a file starting from the root of the domain where the CSS is hosted:

Or I could use an absolute URL to load an external resource:

calc()
The calc() function lets you perform basic math operations on values, and it’s especially
useful when you need to add or subtract a length value from a percentage.

This is how it works:

It returns a length value, so it can be used anywhere you expect a pixel value.

You can perform

One caveat: with addition and subtraction, the space around the operator is mandatory,
otherwise it does not work as expected.

Examples:

div {
 background-image: url(subfolder/test.png);
}

div {
 background-image: url(/test.png);
}

div {
 background-image: url(https://mysite.com/test.png);
}

div {
 max-width: calc(80% - 100px);
}

additions using +
subtractions using -

multiplication using *

division using /

div {
 max-width: calc(50% / 3);
}

index

46 / 169

af://h1-79

Modern CSS Functions for Responsive Design
CSS now includes powerful comparison functions that make responsive design much more
flexible and maintainable. These functions allow you to create fluid, responsive values
without media queries.

The clamp() Function
The clamp() function lets you set a value that adjusts between a minimum and maximum
based on a preferred value. It's perfect for responsive typography and spacing.

Think of clamp() as a smart value that knows its limits. It tries to use your preferred value
(the middle one), but if that would be too small, it uses the minimum, and if it would be too
large, it uses the maximum. This creates truly fluid, responsive designs without needing any
media queries.

The syntax is: clamp(minimum, preferred, maximum) . The preferred value is usually
relative (like viewport units), while the min and max are often fixed values.

This heading will scale with the viewport width (4vw means 4% of viewport width). On a
phone (say 400px wide), 4vw would be 16px, but we've set a minimum of 1rem (usually
16px), so it won't go smaller. On a large screen (2000px wide), 4vw would be 80px, but our
maximum of 3rem (48px) prevents it from getting too large. In between, it scales smoothly.

Here, padding adjusts based on the container's width (5%). On narrow screens, it won't go
below 1rem, keeping content readable. On wide screens, it caps at 3rem, preventing
excessive whitespace.

div {
 max-width: calc(50% + 3px);
}

/* Responsive font size: minimum 1rem, maximum 3rem */
h1 {
 font-size: clamp(1rem, 4vw, 3rem);
}

/* Responsive padding */
.container {
 padding: clamp(1rem, 5%, 3rem);
}

/* Responsive width with limits */
.card {

index

47 / 169

af://h1-80
af://h2-81

This card tries to be 50% of its container's width, but never smaller than 250px (ensuring
content doesn't get squished) and never larger than 600px (maintaining readability).

The clamp() function is particularly useful for creating fluid typography that scales smoothly
with viewport size while respecting minimum and maximum boundaries.

The min() Function
The min() function returns the smallest value from a list of comma-separated values. It's
useful for setting maximum constraints.

The max() Function
The max() function returns the largest value from a list. It's perfect for setting minimum
constraints.

 width: clamp(250px, 50%, 600px);
}

/* Choose the smaller value */

/* Ensure element never exceeds viewport width or 1200px */
.container {
 width: min(100%, 1200px);
}

/* Responsive gap that shrinks on small screens */
.grid {
 gap: min(2rem, 5vw);
}

/* Font size that adapts but has a ceiling */
h2 {
 font-size: min(2.5rem, 8vw);
}

/* Choose the larger value */

/* Ensure minimum width on small screens */
.button {
 width: max(200px, 50%);
}

/* Minimum font size */
p {
 font-size: max(1rem, 2vw);
}

index

48 / 169

af://h2-82
af://h2-83

Combining Functions
These functions become even more powerful when combined:

Practical Examples
Here are some common responsive patterns using these functions:

/* Responsive margin with minimum */
.section {
 margin-bottom: max(1.5rem, 10vh);
}

/* Complex responsive sizing */
.hero {
 height: min(max(400px, 60vh), 800px);
 /* At least 400px, up to 60vh, but never more than 800px */
}

/* Responsive with calc() */
.sidebar {
 width: clamp(200px, calc(100% - 2rem), 350px);
}

/* Multiple values in min/max */
.element {
 padding: min(10vw, 5rem, calc(100% - 80px));
}

/* Fluid typography scale */
:root {
 --text-xs: clamp(0.75rem, 1.5vw, 0.875rem);
 --text-sm: clamp(0.875rem, 2vw, 1rem);
 --text-base: clamp(1rem, 2.5vw, 1.125rem);
 --text-lg: clamp(1.125rem, 3vw, 1.5rem);
 --text-xl: clamp(1.5rem, 4vw, 2rem);
 --text-2xl: clamp(2rem, 5vw, 3rem);
}

/* Responsive container with padding */
.container {
 width: min(100% - 2rem, 1400px);
 margin-inline: auto;
 padding: clamp(1rem, 5vw, 4rem);
}

index

49 / 169

af://h2-84
af://h2-85

These modern functions eliminate many media queries and create smoother responsive
experiences that adapt fluidly to any screen size.

Backgrounds
The background of an element can be changed using several CSS properties:

and the shorthand property background , which allows to shorten definitions and group them
on a single line.

background-color accepts a color value, which can be one of the color keywords, or an
rgb or hsl value:

Instead of using a color, you can use an image as background to an element, by specifying
the image location URL:

/* Responsive grid */
.grid {
 display: grid;
 grid-template-columns: repeat(auto-fit, minmax(min(100%, 300px), 1fr));
 gap: clamp(1rem, 3vw, 2rem);
}

background-color

background-image

background-clip

background-position

background-origin

background-repeat

background-attachment

background-size

p {
 background-color: yellow;
}

div {
 background-color: #333;
}

div {
 background-image: url(image.png);
}

index

50 / 169

af://h1-86

background-clip lets you determine the area used by the background image, or color. The
default value is border-box , which extends up to the border outer edge.

Other values are

When using an image as background you will want to set the position of the image
placement using the background-position property: left , right , center are all valid
values for the X axis, and top , bottom for the Y axis:

If the image is smaller than the background, you need to set the behavior using
background-repeat . Should it repeat-x , repeat-y or repeat on all the axis? This last
one is the default value. Another value is no-repeat .

background-origin lets you choose where the background should be applied: to the entire
element including padding (default) using padding-box , to the entire element including the
border using border-box , to the element without the padding using content-box .

With background-attachment we can attach the background to the viewport, so that
scrolling will not affect the background:

By default the value is scroll . There is another value, local . The best way to visualize
their behavior is this Codepen.

The last background property is background-size . We can use 3 keywords: auto , cover
and contain . auto is the default.

cover expands the image until the entire element is covered by the background.

contain stops expanding the background image when one dimension (x or y) covers the
whole smallest edge of the image, so it’s fully contained into the element.

You can also specify a length value, and if so it sets the width of the background image (and
the height is automatically defined):

padding-box to extend the background up to the padding edge, without the border
content-box to extend the background up to the content edge, without the padding
inherit to apply the value of the parent

div {
 background-position: top right;
}

div {
 background-attachment: fixed;
}

index

51 / 169

https://codepen.io/BernLeech/pen/mMNKJV

If you specify 2 values, one is the width and the second is the height:

The shorthand property background allows to shorten definitions and group them on a
single line.

This is an example:

If you use an image, and the image could not be loaded, you can set a fallback color:

You can also set a gradient as background:

Comments
CSS gives you the ability to write comments in a CSS file, or in the style tag in the page
header

The format is the /* this is a comment */ C-style (or JavaScript-style, if you prefer)
comments.

This is a multiline comment. Until you add the closing */ token, the all the lines found after
the opening one are commented.

Example:

div {
 background-size: 100%;
}

div {
 background-size: 800px 600px;
}

div {
 background: url(bg.png) top left no-repeat;
}

div {
 background: url(image.png) yellow;
}

div {
 background: linear-gradient(#fff, #333);
}

index

52 / 169

af://h1-87

CSS does not have inline comments, like // in C or JavaScript.

Pay attention though - if you add // before a rule, the rule will not be applied, looking like
the comment worked. In reality, CSS detected a syntax error and due to how it works it
ignored the line with the error, and went straight to the next line.

Knowing this approach lets you purposefully write inline comments, although you have to be
careful because you can’t add random text like you can in a block comment.

For example:

In this case, due to how CSS works, the #name rule is actually commented out. You can find
more details here if you find this interesting. To avoid shooting yourself in the foot, just avoid
using inline comments and rely on block comments.

Fonts
At the dawn of the web you only had a handful of fonts you could choose from.

Thankfully today you can load any kind of font on your pages.

CSS has gained many nice capabilities over the years in regards to fonts.

The font property is the shorthand for a number of properties:

Let’s see each one of them and then we’ll cover font .

/*
#name {
 display: block;
} */

#name {
 display: block;
 /* color: red; */
}

// Nice rule!#name {
 display: block;
}

font-family

font-weight

font-stretch

font-style

font-size

index

53 / 169

https://www.xanthir.com/b4U10
af://h1-88

Then we’ll talk about how to load custom fonts, using @import or @font-face , or by
loading a font stylesheet.

font-family

Sets the font family that the element will use.

Why “family”? Because what we know as a font is actually composed of several sub-fonts.
which provide all the style (bold, italic, light..) we need.

Here’s an example from my Mac’s Font Book app - the Fira Code font family hosts several
dedicated fonts underneath:

This property lets you select a specific font, for example:

You can set multiple values, so the second option will be used if the first cannot be used for
some reason (if it’s not found on the machine, or the network connection to download the
font failed, for example):

body {
 font-family: Helvetica;
}

body {
 font-family: Helvetica, Arial;
}

index

54 / 169

af://h3-89

I used some specific fonts up to now, ones we call Web Safe Fonts, as they are pre-
installed on different operating systems.

We divide them in Serif, Sans-Serif, and Monospace fonts. Here’s a list of some of the most
popular ones:

Serif

Sans-Serif

Monospace

You can use all of those as font-family properties, but they are not guaranteed to be
there for every system. Others exist, too, with a varying level of support.

You can also use generic names:

Those are typically used at the end of a font-family definition, to provide a fallback value
in case nothing else can be applied:

Georgia

Palatino
Times New Roman
Times

Arial
Helvetica
Verdana

Geneva
Tahoma

Lucida Grande
Impact
Trebuchet MS

Arial Black

Courier New
Courier

Lucida Console
Monaco

sans-serif a font without ligatures
serif a font with ligatures
monospace a font especially good for code

cursive used to simulate handwritten pieces
fantasy the name says it all

index

55 / 169

font-weight

This property sets the width of a font. You can use those predefined values:

Or using the numeric keywords

where 100 is the lightest font, and 900 is the boldest.

Some of those numeric values might not map to a font, because that must be provided in the
font family. When one is missing, CSS makes that number be at least as bold as the
preceding one, so you might have numbers that point to the same font.

font-stretch

Allows to choose a narrow or wide face of the font, if available.

This is important: the font must be equipped with different faces.

Values allowed are, from narrower to wider:

body {
 font-family: Helvetica, Arial, sans-serif;}

normal
bold

bolder (relative to the parent element)
lighter (relative to the parent element)

100

200
300
400, mapped to normal

500
600

700 mapped to bold

800
900

ultra-condensed

extra-condensed

condensed

semi-condensed

normal

semi-expanded

index

56 / 169

af://h3-90
af://h3-91

font-style

Allows you to apply an italic style to a font:

This property also allows the values oblique and normal . There is very little, if any,
difference between using italic and oblique . The first is easier to me, as HTML already
offers an i element which means italic.

font-size

This property is used to determine the size of fonts.

You can pass 2 kinds of values:

In the second case, the values you can use are:

Usage:

expanded

extra-expanded

ultra-expanded

p {
 font-style: italic;
}

1. a length value, like px , em , rem etc, or a percentage
2. a predefined value keyword

xx-small

x-small
small
medium

large
x-large

xx-large
smaller (relative to the parent element)
larger (relative to the parent element)

p {
 font-size: 20px;
}

li {

index

57 / 169

af://h3-92
af://h3-93

font-variant

This property was originally used to change the text to small caps, and it had just 3 valid
values:

Small caps means the text is rendered in “smaller caps” beside its uppercase letters.

font

The font property lets you apply different font properties in a single one, reducing the
clutter.

We must at least set 2 properties, font-size and font-family , the others are optional:

If we add other properties, they need to be put in the correct order.

This is the order:

Example:

Loading custom fonts using @font-face

@font-face lets you add a new font family name, and map it to a file that holds a font.

 font-size: medium;
}

normal

inherit

small-caps

body {
 font: 20px Helvetica;
}

font: <font-stretch> <font-style> <font-variant> <font-weight> <font-size>
<line-height> <font-family>;

body {
 font: italic bold 20px Helvetica;
}

section {
 font: small-caps bold 20px Helvetica;
}

index

58 / 169

af://h3-94
af://h3-95
af://h3-96

This font will be downloaded by the browser and used in the page, and it’s been such a
fundamental change to typography on the web - we can now use any font we want.

We can add @font-face declarations directly into our CSS, or link to a CSS dedicated to
importing the font.

In our CSS file we can also use @import to load that CSS file.

A @font-face declaration contains several properties we use to define the font, including
src , the URI (one or more URIs) to the font. This follows the same-origin policy, which
means fonts can only be downloaded form the current origin (domain + port + protocol).

Fonts are usually in the formats

The following properties allow us to define the properties to the font we are going to load, as
we saw above:

A note on performance

Of course loading a font has performance implications which you must consider when
creating the design of your page.

Typography
We already talked about fonts, but there’s more to styling text.

In this section we’ll talk about the following properties:

woff (Web Open Font Format)
woff2 (Web Open Font Format 2.0)
eot (Embedded Open Type)
otf (OpenType Font)

ttf (TrueType Font)

font-family

font-weight

font-style

font-stretch

text-transform

text-decoration

text-align

vertical-align

line-height

text-indent

index

59 / 169

af://h3-97
af://h1-98

text-transform

This property can transform the case of an element.

There are 4 valid values:

Example:

text-decoration

This property is sed to add decorations to the text, including

Example:

text-align-last

word-spacing

letter-spacing

text-shadow

white-space

tab-size

writing-mode

hyphens

text-orientation

direction

line-break

word-break

overflow-wrap

capitalize to uppercase the first letter of each word
uppercase to uppercase all the text
lowercase to lowercase all the text

none to disable transforming the text, used to avoid inheriting the property

p {
 text-transform: uppercase;
}

underline

overline

line-through

blink

none

index

60 / 169

af://h3-99
af://h3-100

You can also set the style of the decoration, and the color.

Example:

Valid style values are solid , double , dotted , dashed , wavy .

You can do all in one line, or use the specific properties:

Example:

text-align

By default text align has the start value, meaning the text starts at the “start”, origin 0, 0 of
the box that contains it. This means top left in left-to-right languages, and top right in right-to-
left languages.

Possible values are start , end , left , right , center , justify (nice to have a
consistent spacing at the line ends):

vertical-align

Determines how inline elements are vertically aligned.

p {
 text-decoration: underline;
}

p {
 text-decoration: underline dashed yellow;
}

text-decoration-line

text-decoration-color

text-decoration-style

p {
 text-decoration-line: underline;
 text-decoration-color: yellow;
 text-decoration-style: dashed;
}

p {
 text-align: right;
}

index

61 / 169

af://h3-101
af://h3-102

We have several values for this property. First we can assign a length or percentage value.
Those are used to align the text in a position higher or lower (using negative values) than the
baseline of the parent element.

Then we have the keywords:

line-height

This allows you to change the height of a line. Each line of text has a certain font height, but
then there is additional spacing vertically between the lines. That’s the line height:

text-indent

Indent the first line of a paragraph by a set length, or a percentage of the paragraph width:

text-align-last

By default the last line of a paragraph is aligned following the text-align value. Use this
property to change that behavior:

word-spacing

Modifies the spacing between each word.

baseline (the default), aligns the baseline to the baseline of the parent element
sub makes an element subscripted, simulating the sub HTML element result
super makes an element superscripted, simulating the sup HTML element result
top align the top of the element to the top of the line

text-top align the top of the element to the top of the parent element font
middle align the middle of the element to the middle of the line of the parent
bottom align the bottom of the element to the bottom of the line

text-bottom align the bottom of the element to the bottom of the parent element font

p {
 line-height: 0.9rem;
}

p {
 text-indent: -10px;
}

p {
 text-align-last: right;
}

index

62 / 169

af://h3-103
af://h3-104
af://h3-105
af://h3-106

You can use the normal keyword, to reset inherited values, or use a length value:

letter-spacing

Modifies the spacing between each letter.

You can use the normal keyword, to reset inherited values, or use a length value:

text-shadow

Apply a shadow to the text. By default the text has now shadow.

This property accepts an optional color, and a set of values that set

If the color is not specified, the shadow will use the text color.

Examples:

p {
 word-spacing: 2px;
}

span {
 word-spacing: -0.2em;
}

p {
 letter-spacing: 0.2px;
}

span {
 letter-spacing: -0.2em;
}

the X offset of the shadow from the text

the Y offset of the shadow from the text
the blur radius

p {
 text-shadow: 0.2px 2px;
}

span {
 text-shadow: yellow 0.2px 2px 3px;
}

index

63 / 169

af://h3-107
af://h3-108

white-space

Sets how CSS handles the white space, new lines and tabs inside an element.

Valid values that collapse white space are:

Valid values that preserve white space are:

tab-size

Sets the width of the tab character. By default it’s 8, and you can set an integer value that
sets the character spaces it takes, or a length value:

writing-mode

Defines whether lines of text are laid out horizontally or vertically, and the direction in which
blocks progress.

The values you can use are

hyphens

normal collapses white space. Adds new lines when necessary as the text reaches the
container end
nowrap collapses white space. Does not add a new line when the text reaches the end
of the container, and suppresses any line break added to the text
pre-line collapses white space. Adds new lines when necessary as the text reaches
the container end

pre preserves white space. Does not add a new line when the text reaches the end of
the container, but preserves line break added to the text
pre-wrap preserves white space. Adds new lines when necessary as the text reaches
the container end

p {
 tab-size: 2;
}

span {
 tab-size: 4px;
}

horizontal-tb (default)
vertical-rl content is laid out vertically. New lines are put on the left of the previous

vertical-lr content is laid out vertically. New lines are put on the right of the previous

index

64 / 169

af://h3-109
af://h3-110
af://h3-111
af://h3-112

Determines if hyphens should be automatically added when going to a new line.

Valid values are

text-orientation

When writing-mode is in a vertical mode, determines the orientation of the text.

Valid values are

direction

Sets the direction of the text. Valid values are ltr and rtl :

word-break

This property specifies how to break lines within words.

Speaking of CJK text, the property line-break is used to determine how text lines break.
I’m not an expert with those languages, so I will avoid covering it.

overflow-wrap

If a word is too long to fit a line, it can overflow outside of the container.

This property is also known as word-wrap, although that is non-standard (but still works
as an alias)

none (default)
manual only add an hyphen when there is already a visible hyphen or a hidden hyphen
(a special character)
auto add hyphens when determined the text can have a hyphen.

mixed is the default, and if a language is vertical (like Japanese) it preserves that
orientation, while rotating text written in western languages
upright makes all text be vertically oriented

sideways makes all text horizontally oriented

p {
 direction: rtl;
}

normal (default) means the text is only broken between words, not inside a word

break-all the browser can break a word (but no hyphens are added)
keep-all suppress soft wrapping. Mostly used for CJK (Chinese/Japanese/Korean)
text.

index

65 / 169

af://h3-113
af://h3-114
af://h3-115
af://h3-116

This is the default behavior (overflow-wrap: normal;).

We can use:

to break it at the exact length of the line, or

if the browser sees there’s a soft wrap opportunity somewhere earlier. No hyphens are
added, in any case.

This property is very similar to word-break . We might want to choose this one on western
languages, while word-break has special treatment for non-western languages.

Box Model
Every CSS element is essentially a box. Every element is a generic box.

The box model explains the sizing of the elements based on a few CSS properties.

From the inside to the outside, we have:

The best way to visualize the box model is to open the browser DevTools and check how it is
displayed:

p {
 overflow-wrap: break-word;
}

p {
 overflow-wrap: anywhere;
}

the content area
padding

border
margin

index

66 / 169

af://h1-117

Here you can see how Firefox tells me the properties of a span element I highlighted. I
right-clicked on it, pressed Inspect Element, and went to the Layout panel of the DevTools.

See, the light blue space is the content area. Surrounding it there is the padding, then the
border and finally the margin.

By default, if you set a width (or height) on the element, that is going to be applied to the
content area. All the padding, border, and margin calculations are done outside of the value,
so you have to take this in mind when you do your calculation.

You can change this behavior using Box Sizing.

Border
The border is a thin layer between padding and margin. Editing the border you can make
elements draw their perimeter on screen.

You can work on borders by using those properties:

The property border can be used as a shorthand for all those properties.

border-radius is used to create rounded corners.

You also have the ability to use images as borders, an ability given to you by border-image
and its specific separate properties:

border-style

border-color

border-width

index

67 / 169

af://h1-118

Let’s start with border-style .

The border style

The border-style property lets you choose the style of the border. The options you can
use are:

border-image-source

border-image-slice

border-image-width

border-image-outset

border-image-repeat

dotted

dashed

solid

double

groove

ridge

inset

outset

none

hidden

index

68 / 169

af://h3-119

Check this Codepen for a live example

The default for the style is none , so to make the border appear at all you need to change it
to something else. solid is a good choice most of the times.

You can set a different style for each edge using the properties

or you can use border-style with multiple values to define them, using the usual Top-
Right-Bottom-Left order:

The border width

border-width is used to set the width of the border.

You can use one of the pre-defined values:

or express a value in pixels, em or rem or any other valid length value.

Example:

You can set the width of each edge (Top-Right-Bottom-Left) separately by using 4 values:

or you can use the specific edge properties border-top-width , border-right-width ,
border-bottom-width , border-left-width .

border-top-style

border-right-style

border-bottom-style

border-left-style

p {
 border-style: solid dotted solid dotted;
}

thin

medium (the default value)
thick

p {
 border-width: 2px;
}

p {
 border-width: 2px 1px 2px 1px;
}

index

69 / 169

https://codepen.io/flaviocopes/pen/yraaxq
af://h3-120

The border color

border-color is used to set the color of the border.

If you don’t set a color, the border by default is colored using the color of the text in the
element.

You can pass any valid color value to border-color .

Example:

You can set the color of each edge (Top-Right-Bottom-Left) separately by using 4 values:

or you can use the specific edge properties border-top-color , border-right-color ,
border-bottom-color , border-left-color .

The border shorthand property

Those 3 properties mentioned, border-width , border-style and border-color can be
set using the shorthand property border .

Example:

You can also use the edge-specific properties border-top , border-right , border-
bottom , border-left .

Example:

The border radius

p {
 border-color: yellow;
}

p {
 border-color: black red yellow blue;
}

p {
 border: 2px black solid;
}

p {
 border-left: 2px black solid;
 border-right: 3px red dashed;
}

index

70 / 169

af://h3-121
af://h3-122
af://h3-123

border-radius is used to set rounded corners to the border. You need to pass a value that
will be used as the radius of the circle that will be used to round the border.

Usage:

You can also use the edge-specific properties border-top-left-radius , border-top-
right-radius , border-bottom-left-radius , border-bottom-right-radius .

Using images as borders

One very cool thing with borders is the ability to use images to style them. This lets you go
very creative with borders.

We have 5 properties:

and the shorthand border-image . I won’t go in much details here as images as borders
would need a more in-depth coverage as the one I can do in this little chapter. I recommend
reading the CSS Tricks almanac entry on border-image for more information.

Padding
The padding CSS property is commonly used in CSS to add space in the inner side of an
element.

Remember:

Specific padding properties

padding has 4 related properties that alter the padding of a single edge at once:

p {
 border-radius: 3px;
}

border-image-source

border-image-slice

border-image-width

border-image-outset

border-image-repeat

margin adds space outside an element border

padding adds space inside an element border

padding-top

padding-right

padding-bottom

index

71 / 169

https://css-tricks.com/almanac/properties/b/border-image/
af://h3-124
af://h1-125
af://h3-126

The usage of those is very simple and cannot be confused, for example:

Using the padding shorthand

padding is a shorthand to specify multiple padding values at the same time, and depending
on the number of values entered, it behaves differently.

Using a single value applies that to all the paddings: top, right, bottom, left.

Using 2 values applies the first to bottom & top, and the second to left & right.

Using 3 values applies the first to top, the second to left & right, the third to bottom.

Using 4 values applies the first to top, the second to right, the third to bottom, the fourth to
left.

So, the order is top-right-bottom-left.

Values accepted

padding accepts values expressed in any kind of length unit, the most common ones are
px, em, rem, but many others exist.

Margin
The margin CSS property is commonly used in CSS to add space around an element.

Remember:

padding-left

padding-left: 30px;
padding-right: 3em;

padding: 20px;

padding: 20px 10px;

padding: 20px 10px 30px;

padding: 20px 10px 5px 0px;

margin adds space outside an element border

padding adds space inside an element border

index

72 / 169

https://developer.mozilla.org/en-US/docs/Web/CSS/length
af://h3-127
af://h3-128
af://h1-129

Specific margin properties

margin has 4 related properties that alter the margin of a single edge at once:

The usage of those is very simple and cannot be confused, for example:

Using the margin shorthand

margin is a shorthand to specify multiple margins at the same time, and depending on the
number of values entered, it behaves differently.

Using a single value applies that to all the margins: top, right, bottom, left.

Using 2 values applies the first to bottom & top, and the second to left & right.

Using 3 values applies the first to top, the second to left & right, the third to bottom.

Using 4 values applies the first to top, the second to right, the third to bottom, the fourth to
left.

So, the order is top-right-bottom-left.

Values accepted

margin accepts values expressed in any kind of length unit, the most common ones are px,
em, rem, but many others exist.

It also accepts percentage values, and the special value auto .

margin-top

margin-right

margin-bottom

margin-left

margin-left: 30px;
margin-right: 3em;

margin: 20px;

margin: 20px 10px;

margin: 20px 10px 30px;

margin: 20px 10px 5px 0px;

index

73 / 169

https://developer.mozilla.org/en-US/docs/Web/CSS/length
af://h3-130
af://h3-131
af://h3-132

Using auto to center elements

auto can be used to tell the browser to select automatically a margin, and it’s most
commonly used to center an element in this way:

As said above, using 2 values applies the first to bottom & top, and the second to left &
right.

The modern way to center elements is to use Flexbox, and its justify-content: center;
directive.

All modern browsers have excellent Flexbox support. The margin: 0 auto; technique
remains useful as an alternative approach for centering.

Using a negative margin

margin is the only property related to sizing that can have a negative value. It’s extremely
useful, too.
Setting a negative top margin makes an element move over elements before it, and given
enough negative value it will move out of the page.

A negative bottom margin moves up the elements after it.

A negative right margin makes the content of the element expand beyond its allowed content
size.

A negative left margin moves the element left over the elements that precede it, and given
enough negative value it will move out of the page.

Box Sizing
The default behavior of browsers when calculating the width of an element is to apply the
calculated width and height to the content area, without taking any of the padding, border
and margin in consideration.

This approach has proven to be quite complicated to work with.

You can change this behavior by setting the box-sizing property.

The box-sizing property is a great help. It has 2 values:

content-box is the default, the one we had for ages before box-sizing became a thing.

margin: 0 auto;

border-box

content-box

index

74 / 169

https://flaviocopes.com/flexbox/
af://h3-133
af://h3-134
af://h1-135

border-box is the new and great thing we are looking for. If you set that on an element:

width and height calculation include the padding and the border. Only the margin is left out,
which is reasonable since in our mind we also typically see that as a separate thing: margin
is outside of the box.

This property is a small change but has a big impact. CSS Tricks even declared an
international box-sizing awareness day, just saying, and it’s recommended to apply it to
every element on the page, out of the box, with this:

Aspect Ratio and Modern Sizing
Modern CSS provides powerful properties for maintaining aspect ratios and controlling
element sizing more precisely.

Before the aspect-ratio property, maintaining consistent proportions (especially for
responsive images and videos) required hacky techniques like the "padding-bottom trick."
Now, we can simply tell an element what proportions to maintain, and CSS handles the rest.
This is especially useful for responsive design where elements need to scale while keeping
their shape.

The aspect-ratio Property
The aspect-ratio property lets you define an element's preferred aspect ratio,
automatically calculating one dimension based on the other.

Think of aspect ratio like the shape of a TV screen or photo frame. A 16:9 ratio means for
every 16 units of width, there are 9 units of height. The beauty of aspect-ratio is that you
only need to set one dimension (width OR height), and CSS automatically calculates the
other to maintain the proportion.

.my-div {
 box-sizing: border-box;
}

*,
*:before,
*:after {
 box-sizing: border-box;
}

/* Square aspect ratio */
.square {
 aspect-ratio: 1; /* or 1/1 */
 width: 200px;

index

75 / 169

https://css-tricks.com/international-box-sizing-awareness-day/
af://h1-136
af://h2-137

This creates a perfect square. Set the width to 200px, and the height automatically becomes
200px too. If the width changes (say, on a smaller screen), the height adjusts to maintain the
square shape.

This is the standard widescreen video ratio. The container takes the full width of its parent,
and its height is automatically calculated to be 9/16ths (or 56.25%) of the width. Perfect for
responsive video embeds!

Here we're setting the height and letting CSS calculate the width. With a 3:4 ratio and 400px
height, the width becomes 300px (3/4 of 400).

Responsive Images and Videos
Using aspect-ratio for responsive media:

 /* Height automatically becomes 200px */
}

/* 16:9 video ratio */
.video-container {
 aspect-ratio: 16/9;
 width: 100%;
 /* Height automatically adjusts */
}

/* Portrait ratio */
.portrait {
 aspect-ratio: 3/4;
 height: 400px;
 /* Width automatically becomes 300px */
}

/* Common ratios */
.golden-ratio { aspect-ratio: 1.618; }
.widescreen { aspect-ratio: 16/9; }
.classic-tv { aspect-ratio: 4/3; }
.cinema { aspect-ratio: 2.35/1; }
.square { aspect-ratio: 1; }
.instagram-portrait { aspect-ratio: 4/5; }

/* Responsive video wrapper */
.video-wrapper {
 aspect-ratio: 16/9;
 width: 100%;
 max-width: 800px;

index

76 / 169

af://h2-138

Object Fit and Position
Control how replaced elements (images, videos) fit within their containers:

 overflow: hidden;
}

.video-wrapper iframe {
 width: 100%;
 height: 100%;
 border: 0;
}

/* Responsive image with maintained ratio */
.image-container {
 aspect-ratio: 3/2;
 overflow: hidden;
}

.image-container img {
 width: 100%;
 height: 100%;
 object-fit: cover;
}

/* object-fit values */
.cover {
 object-fit: cover; /* Fills container, may crop */
}

.contain {
 object-fit: contain; /* Fits entirely, may have space */
}

.fill {
 object-fit: fill; /* Stretches to fill (default) */
}

.none {
 object-fit: none; /* Natural size, may overflow */
}

.scale-down {
 object-fit: scale-down; /* Smaller of none or contain */
}

/* Control positioning within container */
.positioned {

index

77 / 169

af://h2-139

Modern Sizing Units

Container Query Units

Container query units are relative to a container's dimensions:

Dynamic Viewport Units

Modern viewport units that account for mobile browser UI:

 object-fit: cover;
 object-position: top left; /* Focus on top-left */
}

.centered {
 object-fit: cover;
 object-position: center; /* Default */
}

.custom-position {
 object-fit: cover;
 object-position: 25% 75%; /* Custom positioning */
}

/* Container query units */
.container {
 container-type: inline-size;
}

.child {
 /* cqw = 1% of container width */
 width: 50cqw;

 /* cqh = 1% of container height */
 height: 30cqh;

 /* cqi = 1% of container inline size */
 padding: 2cqi;

 /* cqb = 1% of container block size */
 margin: 1cqb;

 /* cqmin/cqmax = smaller/larger of cqi or cqb */
 font-size: 5cqmin;
}

index

78 / 169

af://h2-140
af://h3-141
af://h3-142

Intrinsic Sizing
CSS intrinsic sizing keywords:

/* Traditional viewport units */
.old-full-height {
 height: 100vh; /* Can be cut off on mobile */
}

/* Dynamic viewport units */
.dynamic-height {
 /* svh = Small viewport height (browser UI visible) */
 min-height: 100svh;

 /* lvh = Large viewport height (browser UI hidden) */
 max-height: 100lvh;

 /* dvh = Dynamic viewport height (updates as UI appears/disappears) */
 height: 100dvh;
}

/* Same for width */
.dynamic-width {
 width: 100dvw; /* Dynamic viewport width */
 width: 100svw; /* Small viewport width */
 width: 100lvw; /* Large viewport width */
}

/* min-content - smallest size that fits content */
.min {
 width: min-content;
}

/* max-content - preferred size without wrapping */
.max {
 width: max-content;
}

/* fit-content - smaller of max-content or available space */
.fit {
 width: fit-content;
}

/* With limits */
.limited {
 width: fit-content(300px);
}

index

79 / 169

af://h2-143

Practical Examples

/* Practical use cases */
.button {
 width: fit-content;
 min-width: 100px;
 max-width: 200px;
 padding: 10px 20px;
}

.card {
 width: min(100%, max-content);
}

/* Responsive card with aspect ratio */
.card {
 aspect-ratio: 3/4;
 width: 100%;
 max-width: 300px;
 overflow: hidden;
 border-radius: 8px;
}

.card img {
 width: 100%;
 height: 60%;
 object-fit: cover;
}

/* Gallery with consistent ratios */
.gallery {
 display: grid;
 grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
 gap: 1rem;
}

.gallery-item {
 aspect-ratio: 1;
 overflow: hidden;
}

.gallery-item img {
 width: 100%;
 height: 100%;
 object-fit: cover;
 transition: transform 0.3s;
}

index

80 / 169

af://h2-144

Display
The display property of an object determines how it is rendered by the browser.

It’s a very important property, and probably the one with the highest number of values you
can use.

Those values include:

plus others you will not likely use, like ruby .

.gallery-item:hover img {
 transform: scale(1.1);
}

/* Responsive hero section */
.hero {
 width: 100%;
 aspect-ratio: 21/9;
 min-height: 400px;
 max-height: 100dvh;
 position: relative;
}

.hero video {
 width: 100%;
 height: 100%;
 object-fit: cover;
}

block

inline

none

contents

flow

flow-root

table (and all the table-* ones)
flex

grid

list-item

inline-block

inline-table

inline-flex

inline-grid

inline-list-item

index

81 / 169

af://h1-145

Choosing any of those will considerably alter the behavior of the browser with the element
and its children.

In this section we’ll analyze the most important ones not covered elsewhere:

We’ll see some of the others in later chapters, including coverage of table , flex and
grid .

inline

Inline is the default display value for every element in CSS.

All the HTML tags are displayed inline out of the box except some elements like div , p
and section , which are set as block by the user agent (the browser).

Inline elements don’t have any margin or padding applied.

Same for height and width.

You can add them, but the appearance in the page won’t change - they are calculated and
applied automatically by the browser.

inline-block

Similar to inline , but with inline-block width and height are applied as you
specified.

block

As mentioned, normally elements are displayed inline, with the exception of some elements,
including

which are set as block by the browser.

With display: block , elements are stacked one after each other, vertically, and every
element takes up 100% of the page.

block

inline

inline-block

none

div

p

section

ul

index

82 / 169

af://h3-146
af://h3-147
af://h3-148

The values assigned to the width and height properties are respected, if you set them,
along with margin and padding .

none

Using display: none makes an element disappear. It’s still there in the HTML, but just not
visible in the browser.

Positioning
Positioning is what makes us determine where elements appear on the screen, and how
they appear.

You can move elements around, and position them exactly where you want.

In this section we’ll also see how things change on a page based on how elements with
different position interact with each other.

We have one main CSS property: position .

It can have those 5 values:

Static positioning

This is the default value for an element. Static positioned elements are displayed in the
normal page flow.

Relative positioning

If you set position: relative on an element, you are now able to position it with an
offset, using the properties

which are called offset properties. They accept a length value or a percentage.

Take this example I made on Codepen. I create a parent container, a child container, and an
inner box with some text:

static

relative

absolute

fixed

sticky

top

right
bottom

left

index

83 / 169

https://codepen.io/flaviocopes/pen/WWGgrR
af://h3-149
af://h1-150
af://h3-151
af://h3-152

with some CSS to give some colors and padding, but does not affect positioning:

here’s the result:

<div class="parent">
 <div class="child">
 <div class="box">
 <p>Test</p>
 </div>
 </div>
</div>

.parent {
 background-color: #af47ff;
 padding: 30px;
 width: 300px
}
.child {
 background-color: #ff4797;
 padding: 30px
}
.box {
 background-color: #f3ff47;
 padding: 30px;
 border: 2px solid #333;
 border-style: dotted;
 font-family: courier;
 text-align: center;
 font-size: 2rem
}

index

84 / 169

You can try and add any of the properties I mentioned before (top , right , bottom , left)
to .box , and nothing will happen. The position is static .

Now if we set position: relative to the box, at first apparently nothing changes. But the
element is now able to move using the top , right , bottom , left properties, and now
you can alter the position of it relatively to the element containing it.

For example:

A negative value for top will make the box move up relatively to its container.

Or

.box {
 /* ... */
 position: relative;
 top: -60px;
}

.box {
 /* ... */
 position: relative;
 top: -60px;
 left: 180px;
}

index

85 / 169

Notice how the space that is occupied by the box remains preserved in the container, like it
was still in its place.

Another property that will now work is z-index to alter the z-axis placement. We’ll talk
about it later on.

Absolute positioning

Setting position: absolute on an element will remove it from the document’s flow, and it
will not longer follow the original page positioning flow.

Remember in relative positioning that we noticed the space originally occupied by an
element was preserved even if it was moved around?

With absolute positioning, as soon as we set position: absolute on .box , its original
space is now collapsed, and only the origin (x, y coordinates) remain the same.

.box {
 /* ... */
 position: absolute;
}

index

86 / 169

af://h3-153

We can now move the box around as we please, using the top , right , bottom , left
properties:

or

.box {
 /* ... */
 position: absolute;
 top: 0px;
 left: 0px;
}

.box {
 /* ... */
 position: absolute;
 top: 140px;
 left: 50px;
}

index

87 / 169

The coordinates are relative to the closest container that is not static .

This means that if we add position: relative to the .child element, and we set top
and left to 0, the box will not be positioned at the top left margin of the window, but rather
it will be positioned at the 0, 0 coordinates of .child :

Here’s what happens if .child is static (the default):

.child {
 /* ... */
 position: relative;
}

.box {
 /* ... */
 position: absolute;
 top: 0px;
 left: 0px;
}

index

88 / 169

Like for relative positioning, you can use z-index to alter the z-axis placement.

Fixed positioning

Like with absolute positioning, when an element is assigned position: fixed it’s removed
from the flow of the page.

The difference with absolute positioning is this: elements are now always positioned relative
to the window, instead of the first non-static container.

.child {
 /* ... */
 position: static;
}

.box {
 /* ... */
 position: absolute;
 top: 0px;
 left: 0px;
}

.box {
 /* ... */
 position: fixed;
}

index

89 / 169

af://h3-154

Another big difference is that elements are not affected by scrolling. Once you put a sticky
element somewhere, scrolling the page does not remove it from the visible part of the page.

Sticky positioning

While the above values have been around for a very long time, sticky positioning now has
excellent support across all modern browsers.

The UITableView iOS component is the thing that comes to mind when I think about
position: sticky . You know when you scroll in the contacts list and the first letter is
sticked to the top, to let you know you are viewing that particular letter’s contacts?

We used JavaScript to emulate that, but this is the approach taken by CSS to allow it
natively.

CSS Transforms

.box {
 /* ... */
 position: fixed;
 top: 0;
 left: 0;
}

index

90 / 169

af://h3-155
af://h1-156

CSS transforms allow you to modify the coordinate space of elements, enabling you to
rotate, scale, skew, or translate elements. Transforms are hardware-accelerated in modern
browsers, making them performant for animations.

Transforms let you manipulate elements in ways that were previously only possible with
images or complex JavaScript. You can move, rotate, scale, and skew elements, all while
maintaining their original space in the document flow. This means other elements won't
reflow when you transform something, which is great for performance and prevents layout
jumping.

2D Transforms

translate()

Move an element from its current position:

The translate() function moves an element from its current position without affecting the
layout of other elements. Think of it like picking up a photo and sliding it to a new position on
a table - the space where it was remains reserved.

This moves the element 50 pixels to the right and 100 pixels down from where it would
normally be. Positive X values move right, negative left. Positive Y values move down,
negative up.

This is a classic centering trick. When combined with position: absolute; top: 50%;
left: 50%; , the translate pulls the element back by half its own width and height, perfectly
centering it. The percentages refer to the element's own dimensions, not its parent's.

/* Move 50px right and 100px down */
.element {
 transform: translate(50px, 100px);
}

/* Use percentages relative to element's size */
.centered {
 transform: translate(-50%, -50%);
}

/* Single axis translation */
.slide-right {
 transform: translateX(100px);
}

.slide-up {

index

91 / 169

af://h2-157
af://h3-158

Sometimes you only want to move in one direction. translateX() moves horizontally,
translateY() moves vertically. These are shortcuts that make your intent clearer.

rotate()

Rotate an element around its center point:

scale()

Resize an element:

 transform: translateY(-50px);
}

/* Rotate 45 degrees clockwise */
.rotated {
 transform: rotate(45deg);
}

/* Negative values rotate counter-clockwise */
.counter-rotated {
 transform: rotate(-30deg);
}

/* Full rotation */
.spinner {
 transform: rotate(360deg);
}

/* Scale to 1.5x size */
.larger {
 transform: scale(1.5);
}

/* Scale X and Y differently */
.stretched {
 transform: scale(2, 0.5);
}

/* Scale only horizontally or vertically */
.wide {
 transform: scaleX(1.5);
}

.tall {
 transform: scaleY(2);
}

index

92 / 169

af://h3-159
af://h3-160

skew()

Skew an element along the X and Y axes:

Combining Transforms
You can apply multiple transforms by space-separating them:

Transform Origin
Change the point around which transforms are applied:

/* Skew 20 degrees on X axis */
.skewed {
 transform: skew(20deg);
}

/* Skew both axes */
.double-skewed {
 transform: skew(20deg, 10deg);
}

/* Individual axis skewing */
.skew-horizontal {
 transform: skewX(20deg);
}

.complex {
 transform: rotate(45deg) translate(100px) scale(1.5);
}

/* Order matters! */
.order-matters-1 {
 transform: translate(100px) rotate(45deg);
}

.order-matters-2 {
 transform: rotate(45deg) translate(100px);
 /* Different result! */
}

/* Default is center */
.from-center {
 transform-origin: center;
 transform: rotate(45deg);
}

index

93 / 169

af://h3-161
af://h2-162
af://h2-163

3D Transforms
CSS also supports 3D transforms for creating depth effects:

Practical Examples

/* Rotate from top-left corner */
.from-corner {
 transform-origin: top left;
 transform: rotate(45deg);
}

/* Use percentages or pixels */
.custom-origin {
 transform-origin: 25% 75%;
 transform: scale(1.5);
}

/* Enable 3D space on parent */
.container {
 perspective: 1000px;
}

/* 3D rotation */
.flip-x {
 transform: rotateX(180deg);
}

.flip-y {
 transform: rotateY(180deg);
}

.rotate-3d {
 transform: rotateZ(45deg); /* Same as rotate() */
}

/* 3D translation */
.move-forward {
 transform: translateZ(100px);
}

/* Combined 3D transforms */
.card-flip {
 transform: rotateY(180deg) translateZ(100px);
 transform-style: preserve-3d;
}

index

94 / 169

af://h2-164
af://h2-165

CSS Transitions
Transitions allow property changes to occur smoothly over a specified duration, creating
animation effects without JavaScript.

Basic Syntax

/* Hover effect */
.button {
 transition: transform 0.3s;
}

.button:hover {
 transform: translateY(-5px) scale(1.05);
}

/* Card flip effect */
.card {
 transform-style: preserve-3d;
 transition: transform 0.6s;
}

.card.flipped {
 transform: rotateY(180deg);
}

/* Centering with transform */
.absolute-center {
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
}

/* Shorthand: property duration timing-function delay */
.element {
 transition: opacity 0.3s ease-in-out 0s;
}

/* Transition multiple properties */
.box {
 transition: width 0.3s, height 0.3s, background-color 0.5s;
}

/* Transition all properties */
.smooth {

index

95 / 169

af://h1-166
af://h2-167

Transition Properties

transition-property

Specify which properties to transition:

transition-duration

Set how long the transition takes:

transition-timing-function

Control the transition's acceleration:

 transition: all 0.3s ease;
}

.element {
 transition-property: background-color, transform;
 transition-duration: 0.3s;
}

/* Common transitionable properties:
 - opacity
 - transform
 - background-color
 - width, height
 - padding, margin
 - border
 - color
 - box-shadow
*/

.fast {
 transition-duration: 0.1s;
}

.medium {
 transition-duration: 0.3s;
}

.slow {
 transition-duration: 1s;
}

index

96 / 169

af://h2-168
af://h3-169
af://h3-170
af://h3-171

transition-delay

Delay before the transition starts:

Practical Examples

/* Predefined functions */
.ease {
 transition-timing-function: ease; /* Default - slow start, fast middle,
slow end */
}

.linear {
 transition-timing-function: linear; /* Constant speed */
}

.ease-in {
 transition-timing-function: ease-in; /* Slow start */
}

.ease-out {
 transition-timing-function: ease-out; /* Slow end */
}

.ease-in-out {
 transition-timing-function: ease-in-out; /* Slow start and end */
}

/* Custom cubic-bezier */
.custom {
 transition-timing-function: cubic-bezier(0.68, -0.55, 0.265, 1.55);
}

/* Steps for discrete animations */
.steps {
 transition-timing-function: steps(4, end);
}

.delayed {
 transition: opacity 0.3s ease 0.5s; /* Wait 0.5s before starting */
}

/* Staggered animations */
.item:nth-child(1) { transition-delay: 0s; }
.item:nth-child(2) { transition-delay: 0.1s; }
.item:nth-child(3) { transition-delay: 0.2s; }

index

97 / 169

af://h3-172
af://h2-173

CSS Animations
CSS animations allow you to create complex, multi-step animations with precise control over
timing and behavior.

/* Button hover effect */
.button {
 background: #007bff;
 color: white;
 padding: 10px 20px;
 transition: all 0.3s ease;
}

.button:hover {
 background: #0056b3;
 transform: translateY(-2px);
 box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}

/* Menu slide-in */
.menu {
 transform: translateX(-100%);
 transition: transform 0.3s ease-out;
}

.menu.open {
 transform: translateX(0);
}

/* Smooth color change */
.theme-switch {
 background: var(--bg-color);
 color: var(--text-color);
 transition: background-color 0.5s, color 0.5s;
}

/* Accordion expand */
.accordion-content {
 max-height: 0;
 overflow: hidden;
 transition: max-height 0.3s ease-out;
}

.accordion-content.open {
 max-height: 500px; /* Or use JavaScript for exact height */
}

index

98 / 169

af://h1-174

While transitions are great for simple changes between two states (like hover effects),
animations let you create complex sequences with multiple steps. Think of animations as
choreographed performances where you control every movement, while transitions are
simple A-to-B movements. Animations can loop, reverse, pause, and include as many steps
as you need.

Defining Keyframes
Animations are defined using @keyframes :

Keyframes are like a storyboard for your animation. You define what the element should look
like at different points in time, and CSS smoothly animates between these points. The name
you give to your @keyframes rule is how you'll reference it later.

This creates a simple fade-in effect. The element starts completely transparent (from or
0%) and ends completely opaque (to or 100%). CSS automatically calculates all the in-
between states.

Using percentages gives you more control. This is identical to the previous example, but
percentages let you add more steps...

/* Simple two-step animation */
@keyframes fadeIn {
 from {
 opacity: 0;
 }
 to {
 opacity: 1;
 }
}

/* Or using percentages */
@keyframes fadeIn {
 0% {
 opacity: 0;
 }
 100% {
 opacity: 1;
 }
}

/* Multi-step animation */
@keyframes slideBounce {
 0% {
 transform: translateX(0);
 }

index

99 / 169

af://h2-175

This creates a sliding animation with a bounce effect. The element moves to 100px at the
halfway point, then pulls back slightly to 80px at 75%, before settling at 100px. This creates
a natural "overshoot and settle" effect that feels more organic than linear movement.

Applying Animations
Use the animation property to apply keyframes:

Animation Properties

animation-name

Reference the keyframes:

 50% {
 transform: translateX(100px);
 }
 75% {
 transform: translateX(80px);
 }
 100% {
 transform: translateX(100px);
 }
}

/* Shorthand: name duration timing-function delay iteration-count
direction fill-mode play-state */
.element {
 animation: fadeIn 1s ease-in-out 0s 1 normal forwards running;
}

/* Simple usage */
.fade {
 animation: fadeIn 0.5s;
}

/* Multiple animations */
.complex {
 animation:
 slideIn 0.5s ease-out,
 fadeIn 0.3s ease-in;
}

.animated {
 animation-name: slideIn;
}

index

100 / 169

af://h2-176
af://h2-177
af://h3-178

animation-duration

How long one cycle takes:

animation-timing-function

Same as transition timing functions:

animation-delay

Wait before starting:

animation-iteration-count

How many times to repeat:

animation-direction

Direction of the animation:

.animated {
 animation-duration: 2s;
}

.bounce {
 animation-timing-function: cubic-bezier(0.68, -0.55, 0.265, 1.55);
}

.delayed {
 animation-delay: 1s;
}

.once {
 animation-iteration-count: 1;
}

.three-times {
 animation-iteration-count: 3;
}

.infinite {
 animation-iteration-count: infinite;
}

index

101 / 169

af://h3-179
af://h3-180
af://h3-181
af://h3-182
af://h3-183

animation-fill-mode

How to apply styles before/after animation:

animation-play-state

Control playback:

.normal {
 animation-direction: normal; /* Default */
}

.reverse {
 animation-direction: reverse;
}

.alternate {
 animation-direction: alternate; /* Back and forth */
}

.alternate-reverse {
 animation-direction: alternate-reverse;
}

.forwards {
 animation-fill-mode: forwards; /* Keep final state */
}

.backwards {
 animation-fill-mode: backwards; /* Apply initial state during delay */
}

.both {
 animation-fill-mode: both; /* Both forwards and backwards */
}

.paused {
 animation-play-state: paused;
}

.running {
 animation-play-state: running;
}

/* Pause on hover */
.spinner:hover {

index

102 / 169

af://h3-184
af://h3-185

Practical Animation Examples

 animation-play-state: paused;
}

/* Loading spinner */
@keyframes spin {
 to {
 transform: rotate(360deg);
 }
}

.spinner {
 width: 50px;
 height: 50px;
 border: 5px solid #f3f3f3;
 border-top: 5px solid #3498db;
 border-radius: 50%;
 animation: spin 1s linear infinite;
}

/* Pulse effect */
@keyframes pulse {
 0%, 100% {
 transform: scale(1);
 opacity: 1;
 }
 50% {
 transform: scale(1.1);
 opacity: 0.7;
 }
}

.pulse {
 animation: pulse 2s ease-in-out infinite;
}

/* Typing effect */
@keyframes typing {
 from {
 width: 0;
 }
 to {
 width: 100%;
 }
}

@keyframes blink {

index

103 / 169

af://h2-186

Performance Tips

 50% {
 border-color: transparent;
 }
}

.typewriter {
 overflow: hidden;
 border-right: 3px solid black;
 white-space: nowrap;
 animation:
 typing 3s steps(30, end),
 blink 0.5s step-end infinite;
}

/* Bounce effect */
@keyframes bounce {
 0%, 100% {
 transform: translateY(0);
 }
 50% {
 transform: translateY(-20px);
 }
}

.bouncing {
 animation: bounce 1s ease-in-out infinite;
}

/* Fade in and slide up */
@keyframes fadeInUp {
 from {
 opacity: 0;
 transform: translateY(30px);
 }
 to {
 opacity: 1;
 transform: translateY(0);
 }
}

.fade-in-up {
 animation: fadeInUp 0.5s ease-out;
}

1. Use transform and opacity - These properties are GPU-accelerated
2. Avoid animating layout properties - width, height, padding cause reflows

index

104 / 169

af://h2-187

Float for Text Wrapping
The float property has one primary modern use case: wrapping text around images or
other elements, like you see in magazines and newspapers.

Important: Float should NOT be used for page layouts. In the past, before Flexbox and Grid
existed, developers used floats for creating columns and layouts, which led to many hacks
and complications. Today, we use Grid and Flexbox for layouts (which we cover in other
sections). Float is now used exclusively for its original purpose: making text flow around
elements.

The float property supports 3 values:

Say we have a box which contains a paragraph with some text, and the paragraph also
contains an image.

Here’s some code:

3. Use will-change sparingly - Hints to browser about upcoming changes

4. Consider reduced motion - Respect user preferences

/* Performance optimization */
.will-animate {
 will-change: transform, opacity;
}

/* Respect user preferences */
@media (prefers-reduced-motion: reduce) {
 * {
 animation-duration: 0.01ms !important;
 animation-iteration-count: 1 !important;
 transition-duration: 0.01ms !important;
 }
}

left

right

none (the default)

<div class="parent">
 <div class="child">
 <div class="box">
 <p>
 This is some random paragraph and an image.

 The image is in the middle of the text. The image is in the middle

index

105 / 169

af://h1-188

and the visual appearance:

of the text. The image is in the middle of the text. The image is in the
middle of the text. The image is in the middle of the text. The image is
in the middle of the text. The image is in the middle of the text. The
image is in the middle of the text. The image is in the middle of the
text.
 </p>
 </div>
 </div>
</div>

.parent {
 background-color: #af47ff;
 padding: 30px;
 width: 500px
}
.child {
 background-color: #ff4797;
 padding: 30px
}
.box {
 background-color: #f3ff47;
 padding: 30px;
 border: 2px solid #333;
 border-style: dotted;
 font-family: courier;
 text-align: justify;
 font-size: 1rem
}

index

106 / 169

As you can see, the normal flow by default considers the image inline, and makes space for
it in the line itself.

If we add float: left to the image, and some padding:

this is the result:

img {
 float: left;
 padding: 20px 20px 0px 0px;
}

index

107 / 169

and this is what we get by applying a float: right, adjusting the padding accordingly:

img {
 float: right;
 padding: 20px 0px 20px 20px;
}

index

108 / 169

A floated element is removed from the normal flow of the page, and the other content flows
around it.

See the example on Codepen

You are not limited to floating images, too. Here we switch the image with a span element:

<div class="parent">
 <div class="child">
 <div class="box">
 <p>
 This is some random paragraph and an image.
 Some text to float The image is in the middle of the
text.
 The image is in the middle of the text. The image is in the middle
of
 the text. The image is in the middle of the text. The image is in
the
 middle of the text. The image is in the middle of the text. The
image is
 in the middle of the text. The image is in the middle of the text.
The
 image is in the middle of the text.
 </p>
 </div>

index

109 / 169

https://codepen.io/flaviocopes/pen/WWGqPr?editors=1100

and this is the result:

Clearing

What happens when you float more than one element?

If when floated they find another floated image, by default they are stacked up one next to
the other, horizontally. Until there is no room, and they will start being stacked on a new line.

Say we had 3 inline images inside a p tag:

 </div>
</div>

span {
 float: right;
 margin: 20px 0px 20px 20px;
 padding: 10px;
 border: 1px solid black;
}

index

110 / 169

af://h3-189

If we add float: left to those images:

this is what we’ll have:

img {
 float: left;
 padding: 20px 20px 0px 0px;
}

index

111 / 169

if you add clear: left to images, those are going to be stacked vertically rather than
horizontally:

index

112 / 169

The clear property helps manage how elements interact with floated elements that come
before them. While float-based layouts have been replaced by Flexbox and Grid for most
use cases, understanding clear is still useful when working with floated images or legacy
code.

z-index
When we talked about positioning, I mentioned that you can use the z-index property to
control the Z axis positioning of elements.

It’s very useful when you have multiple elements that overlap each other, and you need to
decide which one is visible, as nearer to the user, and which one(s) should be hidden behind
it.

This property takes a number (without decimals) and uses that number to calculate which
elements appear nearer to the user, in the Z axis.

The higher the z-index value, the more an element is positioned nearer to the user.

index

113 / 169

af://h1-190

When deciding which element should be visible and which one should be positioned behind
it, the browser does a calculation on the z-index value.

The default value is auto , a special keyword. Using auto , the Z axis order is determined
by the position of the HTML element in the page - the last sibling appears first, as it’s defined
last.

By default elements have the static value for the position property. In this case, the z-
index property does not make any difference - it must be set to absolute , relative or
fixed to work.

Example:

The element with class .my-second-div will be displayed, and behind it .my-first-div .

Here we used 10 and 20, but you can use any number. Negative numbers too. It’s common
to pick non-consecutive numbers, so you can position elements in the middle. If you use
consecutive numbers instead, you would need to re-calculate the z-index of each element
involved in the positioning.

CSS Filters and Effects
CSS filters allow you to apply graphical effects like blur, brightness, and color shifting to
elements. These effects are hardware-accelerated and can create stunning visual designs.

Filters work like Instagram effects for your web elements. You can blur images, adjust
brightness and contrast, convert to black and white, and much more - all with CSS. These
effects apply to the entire element including its children, and they're processed by the GPU

.my-first-div {
 position: absolute;
 top: 0;
 left: 0;
 width: 600px;
 height: 600px;
 z-index: 10;
}

.my-second-div {
 position: absolute;
 top: 0;
 left: 0;
 width: 500px;
 height: 500px;
 z-index: 20;
}

index

114 / 169

af://h1-191

for smooth performance. Before CSS filters, these effects required image editing software or
canvas manipulation with JavaScript.

Filter Functions

blur()

Apply a Gaussian blur:

The blur filter creates a soft, out-of-focus effect. The value you provide (in pixels) determines
how much the element is blurred - higher values create more blur. This is perfect for creating
depth, drawing attention to other elements, or creating frosted glass effects.

This applies a medium blur, enough to make text unreadable but shapes still recognizable.
Great for background images behind text overlays.

A 1-pixel blur creates a subtle softening effect, useful for reducing the harshness of images
or creating a dreamy atmosphere without losing detail.

Heavy blur like this completely obscures details, perfect for creating abstract backgrounds
from photos or for privacy screens where you want to hide sensitive information while
maintaining color and general shape.

brightness()

Adjust the brightness (1 is normal):

.blurred {
 filter: blur(5px);
}

/* Subtle blur */
.soft {
 filter: blur(1px);
}

/* Heavy blur for backgrounds */
.background-blur {
 filter: blur(20px);
}

.bright {
 filter: brightness(1.5); /* 150% brightness */
}

index

115 / 169

af://h2-192
af://h3-193
af://h3-194

contrast()

Adjust the contrast (1 is normal):

grayscale()

Convert to grayscale (0 to 1):

sepia()

Apply a sepia tone:

.dim {
 filter: brightness(0.5); /* 50% brightness */
}

.dark {
 filter: brightness(0);
}

.high-contrast {
 filter: contrast(2);
}

.low-contrast {
 filter: contrast(0.5);
}

.grayscale {
 filter: grayscale(1); /* Fully grayscale */
}

.partial-grayscale {
 filter: grayscale(0.5); /* 50% grayscale */
}

/* Common hover effect */
img {
 filter: grayscale(1);
 transition: filter 0.3s;
}

img:hover {
 filter: grayscale(0);
}

index

116 / 169

af://h3-195
af://h3-196
af://h3-197

saturate()

Adjust color saturation:

hue-rotate()

Rotate the hue of colors:

.vintage {
 filter: sepia(1);
}

.slight-sepia {
 filter: sepia(0.3);
}

.vibrant {
 filter: saturate(2); /* 200% saturation */
}

.desaturated {
 filter: saturate(0.5);
}

.no-saturation {
 filter: saturate(0); /* Same as grayscale(1) */
}

.hue-shift {
 filter: hue-rotate(90deg);
}

.inverted-colors {
 filter: hue-rotate(180deg);
}

/* Animated color shift */
@keyframes rainbow {
 to {
 filter: hue-rotate(360deg);
 }
}

.rainbow {
 animation: rainbow 3s linear infinite;
}

index

117 / 169

af://h3-198
af://h3-199

invert()

Invert colors:

opacity()

Adjust opacity (similar to opacity property):

drop-shadow()

Apply a drop shadow (follows alpha channel):

Combining Filters
Multiple filters can be combined:

.inverted {
 filter: invert(1); /* Fully inverted */
}

.partial-invert {
 filter: invert(0.5);
}

.transparent {
 filter: opacity(0.5);
}

.shadow {
 filter: drop-shadow(5px 5px 10px rgba(0,0,0,0.5));
}

/* Multiple shadows */
.multi-shadow {
 filter:
 drop-shadow(3px 3px 5px rgba(0,0,0,0.3))
 drop-shadow(-3px -3px 5px rgba(255,255,255,0.3));
}

/* Colored shadow */
.color-shadow {
 filter: drop-shadow(0 10px 20px rgba(0,100,200,0.5));
}

.complex-filter {
 filter:

index

118 / 169

af://h3-200
af://h3-201
af://h3-202
af://h2-203

Backdrop Filter
Apply filters to the area behind an element:

Mix Blend Mode
Control how elements blend with their background:

 contrast(1.2)
 brightness(1.1)
 blur(1px)
 drop-shadow(5px 5px 10px rgba(0,0,0,0.3));
}

/* Instagram-like filters */
.instagram-ludwig {
 filter:
 brightness(1.05)
 saturate(0.75)
 contrast(1.15);
}

.instagram-moon {
 filter:
 grayscale(1)
 contrast(1.1)
 brightness(1.1);
}

/* Frosted glass effect */
.frosted-glass {
 background: rgba(255, 255, 255, 0.2);
 backdrop-filter: blur(10px);
 border: 1px solid rgba(255, 255, 255, 0.3);
}

/* Dark glassmorphism */
.glassmorphism {
 background: rgba(0, 0, 0, 0.5);
 backdrop-filter: blur(15px) saturate(1.5);
 border: 1px solid rgba(255, 255, 255, 0.1);
}

/* Modal overlay */
.modal-backdrop {
 backdrop-filter: blur(5px) brightness(0.7);
}

index

119 / 169

af://h2-204
af://h2-205

Clip Path

.multiply {
 mix-blend-mode: multiply;
}

.screen {
 mix-blend-mode: screen;
}

.overlay {
 mix-blend-mode: overlay;
}

/* Common blend modes:
 - normal
 - multiply (darken)
 - screen (lighten)
 - overlay
 - darken
 - lighten
 - color-dodge
 - color-burn
 - hard-light
 - soft-light
 - difference
 - exclusion
 - hue
 - saturation
 - color
 - luminosity
*/

/* Text knockout effect */
.knockout-text {
 font-size: 100px;
 font-weight: bold;
 mix-blend-mode: multiply;
 background: white;
 color: black;
}

/* Creative overlays */
.color-overlay {
 background: linear-gradient(45deg, #ff0066, #00ff66);
 mix-blend-mode: overlay;
}

index

120 / 169

af://h2-206

Create custom shapes by clipping elements:

Practical Examples

/* Basic shapes */
.circle {
 clip-path: circle(50%);
}

.ellipse {
 clip-path: ellipse(50% 30%);
}

.triangle {
 clip-path: polygon(50% 0%, 0% 100%, 100% 100%);
}

.hexagon {
 clip-path: polygon(25% 0%, 75% 0%, 100% 50%, 75% 100%, 25% 100%, 0%
50%);
}

/* Animated clip path */
@keyframes morph {
 0% {
 clip-path: circle(40%);
 }
 50% {
 clip-path: polygon(50% 0%, 100% 50%, 50% 100%, 0% 50%);
 }
 100% {
 clip-path: circle(40%);
 }
}

.morphing {
 animation: morph 3s ease-in-out infinite;
}

/* Diagonal cut */
.diagonal {
 clip-path: polygon(0 0, 100% 0, 100% 80%, 0 100%);
}

/* Card with glossy effect */
.glossy-card {
 background: linear-gradient(135deg, rgba(255,255,255,0.1),
rgba(255,255,255,0));

index

121 / 169

af://h2-207

Lists
Lists are a very important part of many web pages.

CSS can style them using several properties.

list-style-type is used to set a predefined marker to be used by the list:

 backdrop-filter: blur(10px);
 border: 1px solid rgba(255,255,255,0.2);
 box-shadow: 0 8px 32px rgba(0,0,0,0.1);
}

/* Image hover effects */
.image-hover {
 filter: brightness(0.8) contrast(1.2);
 transition: filter 0.3s;
}

.image-hover:hover {
 filter: brightness(1) contrast(1) saturate(1.2);
}

/* Loading skeleton */
.skeleton {
 background: linear-gradient(90deg, #f0f0f0 25%, #e0e0e0 50%, #f0f0f0
75%);
 background-size: 200% 100%;
 animation: loading 1.5s infinite;
 filter: blur(0.5px);
}

@keyframes loading {
 to {
 background-position: -200% 0;
 }
}

/* Disabled state */
.disabled {
 filter: grayscale(1) opacity(0.6);
 pointer-events: none;
}

li {
 list-style-type: square;
}

index

122 / 169

af://h1-208

We have lots of possible values, which you can see here https://developer.mozilla.org/en-
US/docs/Web/CSS/list-style-type with examples of their appearance. Some of the most
popular ones are disc , circle , square and none .

list-style-image is used to use a custom marker when a predefined marker is not
appropriate:

list-style-position lets you add the marker outside (the default) or inside of the list
content, in the flow of the page rather than outside of it

The list-style shorthand property lets us specify all those properties in the same line:

Error handling
CSS is resilient. When it finds an error, it does not act like JavaScript which packs up all its
things and goes away altogether, terminating all the script execution after the error is found.

CSS tries very hard to do what you want.

If a line has an error, it skips it and jumps to the next line without any error.

If you forget the semicolon on one line:

the line with the error AND the next one will not be applied, but the third rule will be
successfully applied on the page. Basically, it scans all until it finds a semicolon, but when it
reaches it, the rule is now font-size: 20px color: black; , which is invalid, so it skips it.

li {
 list-style-image: url(list-image.png);
}

li {
 list-style-position: inside;
}

li {
 list-style: url(list-image.png) inside;
}

p {
 font-size: 20px
 color: black;
 border: 1px solid black;
}

index

123 / 169

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type
af://h1-209

Sometimes it’s tricky to realize there is an error somewhere, and where that error is,
because the browser won’t tell us.

This is why tools like CSS Lint exist.

Flexbox
Flexbox, also called Flexible Box Module, is one of the two modern layouts systems, along
with CSS Grid.

Compared to CSS Grid, which we’ll talk about later (which is bi-dimensional), flexbox is a
one-dimensional layout model. It will control the layout based on a row or on a column, but
not together at the same time.

The main goal of flexbox is to allow items to fill the whole space offered by their container,
depending on some rules you set.

Let's dive into flexbox and become a master of it in a very short time.

A flexbox layout is applied to a container, by setting

or

the content inside the container will be aligned using flexbox.

The difference between display: inline-flex; and display: flex; is that inline-
flex makes the container behave like an inline element while still using flexbox layout for
its children, whereas flex makes the container behave like a block element.

Container properties
Some flexbox properties apply to the container, which sets the general rules for its items.
They are

Align rows or columns

display: flex;

display: inline-flex;

flex-direction

justify-content

align-items

flex-wrap

flex-flow

index

124 / 169

http://csslint.net/
af://h1-210
af://h2-211
af://h3-212

The first property we see, flex-direction , determines if the container should align its
items as rows, or as columns:

Vertical and horizontal alignment

By default items start from the left if flex-direction is row , and from the top if flex-
direction is column .

flex-direction: row places items as a row, in the text direction (left-to-right for
western countries)
flex-direction: row-reverse places items just like row but in the opposite direction
flex-direction: column places items in a column, ordering top to bottom
flex-direction: column-reverse places items in a column, just like column but in
the opposite direction

index

125 / 169

af://h3-213

You can change this behavior using justify-content to change the horizontal alignment,
and align-items to change the vertical alignment.

Change the horizontal alignment

justify-content has 5 possible values:

flex-start : align to the left side of the container.
flex-end : align to the right side of the container.
center : align at the center of the container.

index

126 / 169

af://h3-214

Change the vertical alignment

align-items has 5 possible values:

space-between : display with equal spacing between them.
space-around : display with equal spacing around them

flex-start : align to the top of the container.

flex-end : align to the bottom of the container.
center : align at the vertical center of the container.
baseline : display at the baseline of the container.

index

127 / 169

af://h3-215

stretch : items are stretched to fit the container.
index

128 / 169

index

129 / 169

A note on baseline

baseline looks similar to flex-start in this example, due to my boxes being too simple.
Check out this Codepen to have a more useful example, which I forked from a Pen originally
created by Martin Michálek. As you can see there, items dimensions are aligned.

Wrap

By default items in a flexbox container are kept on a single line, shrinking them to fit in the
container.

To force the items to spread across multiple lines, use flex-wrap: wrap . This will distribute
the items according to the order set in flex-direction . Use flex-wrap: wrap-reverse
to reverse this order.

A shorthand property called flex-flow allows you to specify flex-direction and flex-
wrap in a single line, by adding the flex-direction value first, followed by flex-wrap
value, for example: flex-flow: row wrap .

Gap Property for Flexbox

The gap property is now fully supported in Flexbox, making spacing between items much
easier. Previously, you had to use margins on flex items, which required adjusting for
first/last items. Now, gap handles this automatically:

/* Modern way - using gap */
.flex-container {
 display: flex;
 gap: 1rem; /* Adds 1rem space between all items */
}

/* Separate row and column gaps */
.flex-container {
 display: flex;
 flex-wrap: wrap;

index

130 / 169

https://codepen.io/flaviocopes/pen/oExoJR
https://twitter.com/machal
af://h3-216
af://h3-217
af://h3-218

The gap property only adds space between items, not around the edges of the container.
This is much cleaner than the old margin approach:

Gap works with all flex directions and wrapping modes, making it the preferred method for
spacing flex items in modern CSS.

Properties that apply to each single item
Since now, we've seen the properties you can apply to the container.

Single items can have a certain amount of independence and flexibility, and you can alter
their appearance using those properties:

Let's see them in detail.

 row-gap: 2rem; /* Space between rows */
 column-gap: 1rem; /* Space between columns */
}

/* Shorthand: row-gap column-gap */
.flex-container {
 display: flex;
 flex-wrap: wrap;
 gap: 2rem 1rem;
}

/* Old way - using margins (avoid this) */
.flex-item {
 margin-right: 1rem;
}
.flex-item:last-child {
 margin-right: 0; /* Had to remove margin from last item */
}

/* New way - using gap (use this) */
.flex-container {
 display: flex;
 gap: 1rem; /* Much simpler! */
}

order

align-self

flex-grow

flex-shrink

flex-basis

flex

index

131 / 169

af://h2-219

Moving items before / after another one using order

Items are ordered based on a order they are assigned. By default every item has order 0
and the appearance in the HTML determines the final order.

You can override this property using order on each separate item. This is a property you
set on the item, not the container. You can make an item appear before all the others by
setting a negative value.

Vertical alignment using align-self

An item can choose to override the container align-items setting, using align-self ,
which has the same 5 possible values of align-items :

flex-start : align to the top of the container.

flex-end : align to the bottom of the container.
center : align at the vertical center of the container.
baseline : display at the baseline of the container.
stretch : items are stretched to fit the container.

index

132 / 169

af://h3-220
af://h3-221

Grow or shrink an item if necessary

CSS Grid
CSS Grid is a fundamentally new approach to building layouts using CSS.

CSS Grid is not a competitor to Flexbox. They interoperate and collaborate on complex
layouts, because CSS Grid works on 2 dimensions (rows AND columns) while Flexbox
works on a single dimension (rows OR columns).

flex-grow
The defaut for any item is 0.
If all items are defined as 1 and one is defined as 2, the bigger element will take the
space of two "1" items.
flex-shrink
The defaut for any item is 1.
If all items are defined as 1 and one is defined as 3, the bigger element will shrink 3x the
other ones. When less space is available, it will take 3x less space.
flex-basis
If set to auto , it sizes an item according to its width or height, and adds extra space
based on the flex-grow property.
If set to 0, it does not add any extra space for the item when calculating the layout.
If you specify a pixel number value, it will use that as the length value (width or height
depends if it's a row or a column item)
flex
This property combines the above 3 properties, flex-grow , flex-shrink and flex-
basis , and provides a shorthand syntax: flex: 0 1 auto

index

133 / 169

af://h3-222
af://h1-223

The basics
The CSS Grid layout is activated on a container element (which can be a div or any other
tag) by setting display: grid .

As with flexbox, you can define some properties on the container, and some properties on
each individual item in the grid.

These properties combined will determine the final look of the grid.

The most basic container properties are grid-template-columns and grid-template-
rows .

grid-template-columns and grid-template-rows

Those properties define the number of columns and rows in the grid, and they also set the
width of each column/row.

The following snippet defines a grid with 4 columns each 200px wide, and 2 rows with a
300px height each.

.container {
 display: grid;
 grid-template-columns: 200px 200px 200px 200px;
 grid-template-rows: 300px 300px;
}

index

134 / 169

af://h2-224
af://h3-225

Here's another example of a grid with 2 columns and 2 rows:

.container {
 display: grid;
 grid-template-columns: 200px 200px;
 grid-template-rows: 100px 100px;
}

index

135 / 169

Automatic dimensions

Many times you might have a fixed header size, a fixed footer size, and the main content
that is flexible in height, depending on its length. In this case you can use the auto
keyword:

Different columns and rows dimensions

In the above examples we made pretty, regular grids by using the same values for rows and
the same values for columns.

You can specify any value for each row/column, to create a lot of different designs:

.container {
 display: grid;
 grid-template-rows: 100px auto 100px;
}

.container {
 display: grid;
 grid-template-columns: 100px 200px;
 grid-template-rows: 100px 50px;
}

index

136 / 169

af://h3-226
af://h3-227

Another example:

.container {
 display: grid;
 grid-template-columns: 10px 100px;
 grid-template-rows: 100px 10px;
}

index

137 / 169

Adding space between the cells

Unless specified, there is no space between the cells.

You can add spacing by using those properties:

or the shorthand syntax grid-gap .

Example:

grid-column-gap

grid-row-gap

.container {
 display: grid;
 grid-template-columns: 100px 200px;
 grid-template-rows: 100px 50px;
 grid-column-gap: 25px;

index

138 / 169

af://h3-228

The same layout using the shorthand:

Span items on multiple columns and/or rows

Every cell item has the option to occupy more than just one box in the row, and expand
horizontally or vertically to get more space, while respecting the grid proportions set in the
container.

Those are the properties we'll use for that:

Example:

 grid-row-gap: 25px;
}

.container {
 display: grid;
 grid-template-columns: 100px 200px;
 grid-template-rows: 100px 50px;
 grid-gap: 25px;
}

grid-column-start

grid-column-end

grid-row-start

grid-row-end

index

139 / 169

af://h3-229

The numbers correspond to the vertical line that separates each column, starting from 1:

.container {
 display: grid;
 grid-template-columns: 200px 200px 200px 200px;
 grid-template-rows: 300px 300px;
}

.item1 {
 grid-column-start: 2;
 grid-column-end: 4;
}

.item6 {
 grid-column-start: 3;
 grid-column-end: 5;
}

index

140 / 169

The same principle applies to grid-row-start and grid-row-end , except this time
instead of taking more columns, a cell takes more rows.

Shorthand syntax

Those properties have a shorthand syntax provided by:

The usage is simple, here's how to replicate the above layout:

grid-column

grid-row

.container {
 display: grid;
 grid-template-columns: 200px 200px 200px 200px;
 grid-template-rows: 300px 300px;
}

.item1 {

index

141 / 169

af://h3-230

Using grid-area as a shorthand
The grid-area property can be used as a shorthand for the grid-column and grid-row
shorthands, when you need to apply both to a single element. Instead of having:

You can use

(grid-row-start / grid-column-start / grid-row-end / grid-column-end)

Using span
Another approach is to set the starting column/row, and set how many it should occupy using
span :

span works also with the non-shorthand syntax:

 grid-column: 2 / 4;
}

.item6 {
 grid-column: 3 / 5;
}

.item1 {
 grid-row: 1 / 4;
 grid-column: 3 / 5;
}

.item1 {
 grid-area: 1 / 3 / 4 / 5;
}

.container {
 display: grid;
 grid-template-columns: 200px 200px 200px 200px;
 grid-template-rows: 300px 300px;
}

.item1 {
 grid-column: 2 / span 2;
}

.item6 {
 grid-column: 3 / span 2;
}

index

142 / 169

af://h2-231
af://h2-232

and you can also use on the start property. In this case, the end position will be used as a
reference, and span will count "back":

More grid configuration

Using fractions

Specifying the exact width of each column or row is not ideal in every case.

A fraction is a unit of space.

The following example divides a grid into 3 columns with the same width, 1/3 of the available
space each.

Using percentages and rem

You can also use percentages, and mix and match fractions, pixels, rem and percentages:

Using repeat()

repeat() is a special function that takes a number that indicates the number of times a
row/column will be repeated, and the length of each one.

If every column has the same width you can specify the layout using this syntax:

.item1 {
 grid-column-start: 2;
 grid-column-end: span 2;
}

.item1 {
 grid-column-start: span 2;
 grid-column-end: 3;
}

.container {
 grid-template-columns: 1fr 1fr 1fr;
}

.container {
 grid-template-columns: 3rem 15% 1fr 2fr
}

.container {
 grid-template-columns: repeat(4, 100px);

index

143 / 169

af://h2-233
af://h3-234
af://h3-235
af://h3-236

This creates 4 columns with the same width.

Or using fractions:

Specify a minimum width for a row

Common use case: Have a sidebar that never collapses more than a certain amount of
pixels when you resize the window.

Here's an example where the sidebar takes 1/4 of the screen and never takes less than
200px:

You can also set just a maximum value using the auto keyword:

or just a minimum value:

Positioning elements using grid-template-areas

By default elements are positioned in the grid using their order in the HTML structure.

Using grid-template-areas You can define template areas to move them around in the
grid, and also to span an item on multiple rows / columns instead of using grid-column .

Here's an example:

}

.container {
 grid-template-columns: repeat(4, 1fr);
}

.container {
 grid-template-columns: minmax(200px, 3fr) 9fr;
}

.container {
 grid-template-columns: minmax(auto, 50%) 9fr;
}

.container {
 grid-template-columns: minmax(100px, auto) 9fr;
}

<div class="container">
 <main>

index

144 / 169

af://h3-237
af://h3-238

Despite their original order, items are placed where grid-template-areas define,
depending on the grid-area property associated to them.

Adding empty cells in template areas

You can set an empty cell using the dot . instead of an area name in grid-template-
areas :

 ...
 </main>
 <aside>
 ...
 </aside>
 <header>
 ...
 </header>
 <footer>
 ...
 </footer>
</div>

.container {
 display: grid;
 grid-template-columns: 200px 200px 200px 200px;
 grid-template-rows: 300px 300px;
 grid-template-areas:
 "header header header header"
 "sidebar main main main"
 "footer footer footer footer";
}

main {
 grid-area: main;
}

aside {
 grid-area: sidebar;
}

header {
 grid-area: header;
}

footer {
 grid-area: footer;
}

index

145 / 169

af://h3-239

Fill a page with a grid
You can make a grid extend to fill the page using fr :

An example: header, sidebar, content and footer
Here is a simple example of using CSS Grid to create a site layout that provides a header op
top, a main part with sidebar on the left and content on the right, and a footer afterwards.

Here's the markup:

.container {
 display: grid;
 grid-template-columns: 200px 200px 200px 200px;
 grid-template-rows: 300px 300px;
 grid-template-areas:
 ". header header ."
 "sidebar . main main"
 ". footer footer .";
}

.container {
 display: grid;
 height: 100vh;
 grid-template-columns: 1fr 1fr 1fr 1fr;
 grid-template-rows: 1fr 1fr;
}

<div class="wrapper">
 <header>Header</header>
 <article>
 <h1>Welcome</h1>
 <p>Hi!</p>

index

146 / 169

af://h2-240
af://h2-241

and here's the CSS:

I added some colors to make it prettier, but basically it assigns to every different tag a grid-
area name, which is used in the grid-template-areas property in .wrapper .

When the layout is smaller we can put the sidebar below the content using a media query:

 </article>
 <aside>Sidebar</aside>
 <footer>Footer</footer>
</div>

header {
 grid-area: header;
 background-color: #fed330;
 padding: 20px;
}

article {
 grid-area: content;
 background-color: #20bf6b;
 padding: 20px;
}

aside {
 grid-area: sidebar;
 background-color: #45aaf2;
}

footer {
 padding: 20px;
 grid-area: footer;
 background-color: #fd9644;
}

.wrapper {
 display: grid;
 grid-gap: 20px;
 grid-template-columns: 1fr 3fr;
 grid-template-areas:
 "header header"
 "sidebar content"
 "footer footer";
}

@media (max-width: 500px) {
 .wrapper {
 grid-template-columns: 4fr;

index

147 / 169

Custom Properties (or CSS Variables)
CSS is not a programming language like JavaScript/TypeScript, C, Python, PHP, Ruby or Go
where variables are key to do something useful. CSS is very limited in what it can do, and it's
mainly a declarative syntax to tell browsers how they should display an HTML page.

But a variable is a variable: a name that refers to a value, and variables in CSS helps reduce
repetition and inconsistencies in your CSS, by centralizing the values definition.

And it introduces a way to access and change the value of a CSS Variable programmatically
using JavaScript.

A CSS Variable is defined with a special syntax, prepending two dashes to a name (--
variable-name), then a colon and a value. Like this:

(more on :root later)

You can access the variable value using var() :

var() accepts a second parameter, which is the default fallback value when the variable
value is not set:

The variable value can be any valid CSS value, for example:

 grid-template-areas:
 "header"
 "content"
 "sidebar"
 "footer";
 }
}

:root {
 --primary-color: yellow;
}

p {
 color: var(--primary-color);
}

p {
 color: var(--primary-color, 30px);
}

index

148 / 169

af://h1-242

CSS Variables can be defined inside any element. Some examples:

What changes in those different examples is the scope.

Adding variables to a selector makes them available to all the children of it.

In the example above you saw the use of :root when defining a CSS variable:

:root is a CSS pseudo-class that identifies the root element of a tree.

:root {
 --default-padding: 30px 30px 20px 20px;
 --default-color: red;
 --default-background: #fff;
}

:root {
 --default-color: red;
}

body {
 --default-color: red;
}

main {
 --default-color: red;
}

p {
 --default-color: red;
}

span {
 --default-color: red;
}

a:hover {
 --default-color: red;
}

:root {
 --primary-color: yellow;
}

index

149 / 169

In the context of an HTML document, using the :root selector points to the html element,
except that :root has higher specificity (takes priority).

In the context of an SVG image, :root points to the svg tag.

Adding a CSS custom property to :root makes it available to all the elements in the page.

If you add a variable inside a .container selector, it's only going to be available to children
of .container :

and using it outside of this element is not going to work.

Variables can be reassigned:

Outside .container , --primary-color will be yellow, but inside it will be blue.

You can also assign or overwrite a variable inside the HTML using inline styles:

CSS Variables follow the normal CSS cascading rules, with precedence set according to
specificity

The coolest thing with CSS Variables is the ability to access and edit them using JavaScript.

Here's how you set a variable value using plain JavaScript:

.container {
 --secondary-color: yellow;
}

:root {
 --primary-color: yellow;
}

.container {
 --primary-color: blue;
}

<main style="--primary-color: orange;">
 <!-- ... -->
</main>

const element = document.getElementById('my-element')
element.style.setProperty('--variable-name', 'a-value')

index

150 / 169

This code below can be used to access a variable value instead, in case the variable is
defined on :root :

Or, to get the style applied to a specific element, in case of variables set with a different
scope:

If a variable is assigned to a property which does not accept the variable value, it's
considered invalid.

For example you might pass a pixel value to a position property, or a rem value to a color
property.

In this case the line is considered invalid and ignored.

Note that CSS Variables are case sensitive, this variable --width: 100px; is different than
the variable --Width: 100px; .

To do math in CSS Variables, you need to use calc() , for example:

Media types
Used in media queries and @import declarations, media types allow us to determine on
which media a CSS file, or a piece of CSS, is loaded.

We have the following media types

screen is the default.

const styles = getComputedStyle(document.documentElement)
const value = String(styles.getPropertyValue('--variable-name')).trim()

const element = document.getElementById('my-element')
const styles = getComputedStyle(element)
const value = String(styles.getPropertyValue('--variable-name')).trim()

:root {
 --default-left-padding: calc(10px * 2);
}

all means all the media
print used when printing
screen used when the page is presented on a screen
speech used for screen readers

index

151 / 169

af://h1-243

In the past we had more of them, but most are deprecated as they proven to not be an
effective way of determining device needs.

We can use them in @import statements like this:

We can load a CSS file on multiple media types separating each with a comma:

The same works for the link tag in HTML:

We're not limited to just using media types in the media attribute and in the @import
declaration.

Using media feature descriptors, we can add more information to the media attribute of
link or to the @import declaration, to express more conditionals over the loading of the
CSS.

Here's the list of them:

Each of them have a corresponding min- and max-, for example:

@import url(myfile.css) screen;
@import url(myfile-print.css) print;

@import url(myfile.css) screen, print;

<link rel="stylesheet" type="text/css" href="myfile.css" media="screen" />
<link rel="stylesheet" type="text/css" href="another.css" media="screen,
print" />

width

height

device-width

device-height

aspect-ratio

device-aspect-ratio

color

color-index

monochrome

resolution

orientation

scan

grid

min-width , max-width

index

152 / 169

and so on.

Some of those accept a length value which can be expressed in px or rem or any length
value. It's the case of width , height , device-width , device-height .

For example:

Notice that we wrap each block using media feature descriptors in parentheses.

Some accept a fixed value. orientation , used to detect the device orientation, accepts
portrait or landscape .

Example:

scan , used to determine the type of screen, accepts progressive (for modern displays) or
interlace (for older CRT devices)

Some others want an integer.

Like color which inspects the number of bits per color component used by the device. Very
low-level, but you just need to know it's there for your usage (like grid , color-index ,
monochrome).

aspect-ratio and device-aspect-ratio accept a ratio value representing the width to
height viewport ratio, which is expressed as a fraction.

Example:

resolution represents the pixel density of the device, expressed in a resolution data type
like dpi .

Example:

We can combine rules using and :

min-device-width , max-device-width

@import url(myfile.css) screen and (max-width: 800px);

<link rel="stylesheet" type="text/css" href="myfile.css" media="screen and
(orientation: portrait)" />

@import url(myfile.css) screen and (aspect-ratio: 4/3);

@import url(myfile.css) screen and (min-resolution: 100dpi);

index

153 / 169

https://developer.mozilla.org/en-US/docs/Web/CSS/resolution

We can perform an "or" type of logic operation using commas, which combines multiple
media queries:

We can use not to negate a media query:

Important: not can only be used to negate an entire media query, so it must be placed at
the beginning of it (or after a comma)

Media queries
All those above rules we saw applied to @import or to the link HTML tag can be applied
inside the CSS, too.

You need to wrap them in a @media () {} structure.

Example:

and this is the foundation for responsive design.

Media queries can be quite complex. This example applies the CSS only if it's a screen
device, the width is between 600 and 800 pixels, and the orientation is landscape:

A common strategy is to design for mobile devices first, then use media queries to enhance
the layout for larger screens:

<link rel="stylesheet" type="text/css" href="myfile.css" media="screen and
(max-width: 800px)" />

@import url(myfile.css) screen, print;

@import url(myfile.css) not screen;

@media screen and (max-width: 800px) {
 /* enter some CSS */
}

@media screen and (max-width: 800px) and (min-width: 600px) and
(orientation: landscape) {
 /* enter some CSS */
}

/* Base styles for mobile */
.container {
 width: 100%;

index

154 / 169

af://h1-244

While you should design breakpoints based on your content, these are commonly used
widths:

Be careful with these media query issues:

Dark Mode Support with prefers-color-scheme
Modern operating systems offer dark mode, and CSS can detect and respond to the user's
preference using the prefers-color-scheme media query. This allows your website to
automatically adapt to the user's system settings.

Dark mode isn't just a trendy feature - it reduces eye strain in low-light conditions, saves
battery on OLED screens, and many users simply prefer it. The prefers-color-scheme
media query lets your website automatically match the user's system preference, creating a

 padding: 10px;
}

/* Tablet styles */
@media screen and (min-width: 768px) {
 .container {
 width: 750px;
 padding: 20px;
 }
}

/* Desktop styles */
@media screen and (min-width: 1024px) {
 .container {
 width: 980px;
 }
}

320px — 480px: Mobile devices

481px — 768px: iPads, tablets
769px — 1024px: Small screens, laptops
1025px — 1200px: Desktops, large screens

1201px and more: Extra large screens, TV

Too many breakpoints: This can make maintenance difficult. Focus on content-driven
breakpoints.
Overlapping queries: Ensure your media queries don't contradict each other with
overlapping conditions.

Device-specific media queries: Target ranges of screen sizes rather than specific
devices.

index

155 / 169

af://h1-245

seamless experience. When users switch their device to dark mode, your website switches
too, without them having to find a toggle button.

Basic Dark Mode Implementation
The simplest way to implement dark mode is to detect the preference and adjust colors
accordingly:

The key to maintainable dark mode is using CSS custom properties (variables). Define your
colors once as variables, then change only the variable values for dark mode. This approach
keeps your actual CSS rules unchanged - only the color definitions swap.

These are your default colors, typically for light mode. The :root selector (which targets the
<html> element) is where we define global CSS variables. Each variable starts with --
and can be named anything you want.

When the user's system is in dark mode, this media query activates and overrides the color
variables. Notice how we're not using pure black (#000000) for the background - that's too
harsh. Dark grays are easier on the eyes.

/* Light mode (default) */
:root {
 --background: #ffffff;
 --text-color: #000000;
 --card-bg: #f5f5f5;
 --link-color: #0066cc;
 --border-color: #dddddd;
}

/* Dark mode */
@media (prefers-color-scheme: dark) {
 :root {
 --background: #1a1a1a;
 --text-color: #e0e0e0;
 --card-bg: #2a2a2a;
 --link-color: #66b3ff;
 --border-color: #444444;
 }
}

/* Apply the CSS variables */
body {
 background-color: var(--background);
 color: var(--text-color);
}

index

156 / 169

af://h2-246

Now your components reference the variables, not hard-coded colors. When dark mode
activates, these components automatically use the dark color values without any changes to
their CSS.

Detecting Light Mode Explicitly
You can also explicitly target light mode:

Images and Dark Mode
Images might need adjustments in dark mode. You can use filters or provide alternative
images:

.card {
 background-color: var(--card-bg);
 border: 1px solid var(--border-color);
}

@media (prefers-color-scheme: light) {
 /* Light mode specific styles */
 .hero {
 background-image: url('light-hero.jpg');
 }
}

@media (prefers-color-scheme: dark) {
 /* Dark mode specific styles */
 .hero {
 background-image: url('dark-hero.jpg');
 }
}

/* Dim images in dark mode */
@media (prefers-color-scheme: dark) {
 img {
 opacity: 0.8;
 filter: brightness(0.9);
 }

 /* Except for images that should stay bright */
 img.logo {
 opacity: 1;
 filter: none;
 }
}

/* Or swap images entirely */

index

157 / 169

af://h2-247
af://h2-248

Respecting User Preference with JavaScript
You can also detect and respond to color scheme preferences with JavaScript:

Advanced Dark Mode Patterns
Here's a comprehensive example with smooth transitions:

.logo {
 content: url('logo-light.svg');
}

@media (prefers-color-scheme: dark) {
 .logo {
 content: url('logo-dark.svg');
 }
}

/* Add a class-based override system */
body.light-mode {
 --background: #ffffff;
 --text-color: #000000;
}

body.dark-mode {
 --background: #1a1a1a;
 --text-color: #e0e0e0;
}

/* Define color schemes with semantic names */
:root {
 /* Light mode colors */
 --color-bg-primary: #ffffff;
 --color-bg-secondary: #f8f9fa;
 --color-bg-tertiary: #e9ecef;
 --color-text-primary: #212529;
 --color-text-secondary: #6c757d;
 --color-accent: #0066cc;
 --color-success: #28a745;
 --color-warning: #ffc107;
 --color-danger: #dc3545;
 --shadow-sm: 0 1px 2px rgba(0,0,0,0.1);
 --shadow-md: 0 4px 6px rgba(0,0,0,0.1);
}

@media (prefers-color-scheme: dark) {
 :root {

index

158 / 169

af://h2-249
af://h2-250

Best Practices for Dark Mode

The prefers-color-scheme media query is widely supported in modern browsers and
provides a seamless way to respect user preferences for dark or light interfaces.

 --color-bg-primary: #121212;
 --color-bg-secondary: #1e1e1e;
 --color-bg-tertiary: #2a2a2a;
 --color-text-primary: #e0e0e0;
 --color-text-secondary: #a0a0a0;
 --color-accent: #66b3ff;
 --color-success: #4caf50;
 --color-warning: #ff9800;
 --color-danger: #f44336;
 --shadow-sm: 0 1px 2px rgba(0,0,0,0.3);
 --shadow-md: 0 4px 6px rgba(0,0,0,0.3);
 }
}

/* Smooth transitions when changing themes */
body {
 background-color: var(--color-bg-primary);
 color: var(--color-text-primary);
 transition: background-color 0.3s ease, color 0.3s ease;
}

/* Components using the color system */
.card {
 background: var(--color-bg-secondary);
 border: 1px solid var(--color-bg-tertiary);
 box-shadow: var(--shadow-sm);
}

.button-primary {
 background: var(--color-accent);
 color: var(--color-bg-primary);
}

1. Use semantic color names rather than literal ones (e.g., --color-text-primary
instead of --color-black)

2. Test contrast ratios in both modes to ensure accessibility

3. Consider reduced contrast in dark mode - pure black on white becomes off-white on
dark gray

4. Adjust shadows and elevations - shadows may need to be lighter or darker depending
on the mode

5. Test with real content - ensure images, videos, and third-party embeds look good in
both modes

index

159 / 169

af://h2-251

Feature queries
Feature queries allow you to apply CSS rules only when the browser supports a particular
CSS feature. This is done using the @supports rule, which checks if a browser supports a
specific property or value before applying styles.

The basic syntax is:

For example, to apply styles only when CSS Grid is supported:

You can also check for the lack of support using the not operator:

Feature queries support logical operators for complex conditions:

Here's an example combining multiple conditions:

Using Feature Queries with @supports

@supports (property: value) {
 /* CSS rules that will only be applied if the feature is supported */
}

@supports (display: grid) {
 .container {
 display: grid;
 grid-template-columns: repeat(3, 1fr);
 gap: 20px;
 }
}

@supports not (display: grid) {
 /* Fallback styles for browsers that don't support grid */
 .container {
 display: flex;
 flex-wrap: wrap;
 }
}

and: Requires all conditions to be true
or: Requires at least one condition to be true

not: Negates a condition

@supports (display: grid) and (gap: 20px) {
 /* CSS that uses both grid and gap properties */
}

index

160 / 169

af://h1-252
af://h3-253

You can combine media queries with feature queries to create even more specific conditions:

Feature queries are particularly useful when:

Container Queries
Container queries represent the next evolution in responsive design, allowing you to style
elements based on the size of their parent container rather than just the viewport size. This
provides more granular control for component-based designs.

While media queries are useful for adapting layouts to different screen sizes, they fall short
when you need to reuse components in different contexts. Container queries solve this
problem by letting components adapt based on their immediate container's size, not just the
viewport.

@media screen and (min-width: 800px) {
 @supports (display: grid) {
 .container {
 display: grid;
 grid-template-columns: 1fr 1fr;
 }
 }
}

Implementing progressive enhancement strategies

Providing fallbacks for newer CSS features
Creating layouts that adapt to browser capabilities, not just screen sizes

/* Define a container */
.card-container {
 container-type: inline-size;
 container-name: card;
}

/* Apply styles based on container width */
@container card (min-width: 400px) {
 .card {
 display: flex;
 flex-direction: row;
 }

 .card-image {
 width: 30%;
 }
}

@container card (max-width: 399px) {

index

161 / 169

af://h1-254

Setting Up Container Queries

You can nest container queries for complex layouts that respond to multiple container
contexts:

Container queries are now supported in all major modern browsers. You can use feature
queries to provide fallbacks:

 .card {
 display: flex;
 flex-direction: column;
 }

 .card-image {
 width: 100%;
 }
}

container-type : Establishes an element as a query container. Values include size ,
inline-size , and normal .
container-name : Assigns a name to the container for targeting in container queries.
container : Shorthand property for setting both type and name.

.outer-container {
 container-type: inline-size;
}

.inner-container {
 container-type: inline-size;
}

@container (min-width: 700px) {
 /* Styles for elements in containers at least 700px wide */

 @container (min-width: 400px) {
 /* Styles for elements in nested containers at least 400px wide */
 }
}

@supports (container-type: inline-size) {
 /* Container query styles */
}

@supports not (container-type: inline-size) {
 /* Fallback styles */
}

index

162 / 169

af://h3-255

Container queries complement media queries rather than replace them. Use media queries
for page-level layouts and container queries for component-level responsiveness.

CSS Scroll Snap
Scroll snap allows you to create smooth, controlled scrolling experiences with precise
stopping points. It's perfect for carousels, galleries, and full-page sections.

Have you ever tried to scroll through a carousel and wished it would automatically align each
item perfectly? Or scrolled through a presentation where slides didn't quite line up? Scroll
snap solves this by creating magnetic stopping points. When users scroll, the browser
automatically adjusts the final position to align with your defined snap points, creating a
polished, app-like experience without any JavaScript.

Scroll Snap Container
Define the scroll container and snap behavior:

The container is where you define the snap rules. You tell it which axis to snap on
(horizontal, vertical, or both) and how aggressively to snap. The children elements then
define where the snap points are.

This creates a horizontal carousel. The x means we're snapping horizontally, and
mandatory means the browser will always snap to a point - even small scrolls will jump to
the nearest snap position. The container needs overflow-x: scroll to be scrollable.

Perfect for full-page sections that should fill the viewport. Users scroll vertically, and each
section snaps into full view. The 100vh height ensures we see one section at a time.

/* Basic horizontal scroll snap */
.carousel {
 scroll-snap-type: x mandatory;
 overflow-x: scroll;
 display: flex;
}

/* Vertical scroll snap */
.vertical-sections {
 scroll-snap-type: y mandatory;
 overflow-y: scroll;
 height: 100vh;
}

/* Proximity vs mandatory */
.gentle-snap {
 scroll-snap-type: x proximity; /* Snaps only when close */

index

163 / 169

af://h1-256
af://h2-257

proximity is more subtle - it only snaps when the user stops scrolling near a snap point.
This feels more natural for content where exact alignment isn't critical. mandatory always
forces a snap, which is better for slideshows or image galleries where you always want
perfect alignment.

Scroll Snap Alignment
Control where items snap to:

Scroll Snap Stop
Control whether scrolling can skip snap points:

}

.strict-snap {
 scroll-snap-type: x mandatory; /* Always snaps */
}

/* Both axes */
.matrix {
 scroll-snap-type: both mandatory;
 overflow: scroll;
}

/* Snap to start of container */
.item {
 scroll-snap-align: start;
}

/* Snap to center */
.centered-item {
 scroll-snap-align: center;
}

/* Snap to end */
.end-item {
 scroll-snap-align: end;
}

/* Different alignment for each axis */
.custom-align {
 scroll-snap-align: start center;
 /* x-axis: start, y-axis: center */
}

index

164 / 169

af://h2-258
af://h2-259

Scroll Padding and Margin
Add spacing around snap points:

Practical Examples

Image Carousel

/* Prevent skipping this snap point */
.important-slide {
 scroll-snap-stop: always;
}

/* Allow skipping (default) */
.skippable {
 scroll-snap-stop: normal;
}

/* Padding on the container */
.container {
 scroll-snap-type: x mandatory;
 scroll-padding: 20px; /* All sides */
 /* Or individual sides */
 scroll-padding-left: 50px;
 scroll-padding-right: 50px;
}

/* Margin on items */
.item {
 scroll-snap-align: start;
 scroll-margin: 10px; /* Space before snap point */
}

/* Visual indicator space */
.with-indicator {
 scroll-snap-type: y mandatory;
 scroll-padding-top: 80px; /* Space for fixed header */
}

.carousel {
 display: flex;
 overflow-x: auto;
 scroll-snap-type: x mandatory;
 scroll-behavior: smooth;
 gap: 20px;
 padding: 20px;
}

index

165 / 169

af://h2-260
af://h2-261
af://h3-262

Full Page Sections

Product Gallery

.carousel img {
 flex: 0 0 auto;
 width: 300px;
 height: 200px;
 object-fit: cover;
 scroll-snap-align: center;
 border-radius: 10px;
}

/* Hide scrollbar but keep functionality */
.carousel {
 scrollbar-width: none; /* Firefox */
 -webkit-overflow-scrolling: touch; /* Smooth iOS scrolling */
}

.carousel::-webkit-scrollbar {
 display: none; /* Chrome, Safari */
}

.fullpage-container {
 height: 100vh;
 overflow-y: auto;
 scroll-snap-type: y mandatory;
 scroll-behavior: smooth;
}

.section {
 height: 100vh;
 scroll-snap-align: start;
 display: flex;
 align-items: center;
 justify-content: center;
}

/* With navigation dots */
.section:nth-child(odd) {
 background: linear-gradient(135deg, #667eea, #764ba2);
}

.section:nth-child(even) {
 background: linear-gradient(135deg, #f093fb, #f5576c);
}

index

166 / 169

af://h3-263
af://h3-264

Mobile-Friendly Tabs

Timeline

.product-gallery {
 display: grid;
 grid-auto-flow: column;
 grid-auto-columns: min(100%, 400px);
 overflow-x: auto;
 scroll-snap-type: x proximity;
 scroll-padding: 20px;
 gap: 20px;
}

.product-card {
 scroll-snap-align: start;
 background: white;
 border-radius: 12px;
 padding: 20px;
 box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}

.tab-container {
 display: flex;
 overflow-x: auto;
 scroll-snap-type: x mandatory;
 border-bottom: 2px solid #e0e0e0;
}

.tab {
 flex: 0 0 auto;
 padding: 15px 30px;
 scroll-snap-align: start;
 white-space: nowrap;
 cursor: pointer;
 transition: background 0.3s;
}

.tab.active {
 border-bottom: 2px solid #007bff;
 background: rgba(0, 123, 255, 0.1);
}

.timeline {
 display: flex;
 overflow-x: auto;
 scroll-snap-type: x mandatory;

index

167 / 169

af://h3-265
af://h3-266

Best Practices

 padding: 50px 0;
 position: relative;
}

.timeline::before {
 content: '';
 position: absolute;
 top: 50%;
 left: 0;
 right: 0;
 height: 2px;
 background: #ddd;
}

.timeline-item {
 flex: 0 0 auto;
 width: 250px;
 scroll-snap-align: center;
 padding: 20px;
 text-align: center;
}

.timeline-item::before {
 content: '';
 width: 20px;
 height: 20px;
 background: #007bff;
 border-radius: 50%;
 margin: 0 auto 20px;
 display: block;
}

1. Always provide visual feedback - Show scroll indicators or progress
2. Test on touch devices - Ensure smooth touch scrolling

3. Consider accessibility - Provide keyboard navigation alternatives
4. Use scroll-behavior: smooth - For programmatic scrolling
5. Performance - Scroll snap is hardware-accelerated and performant

/* Smooth scrolling for the entire page */
html {
 scroll-behavior: smooth;
}

/* Respect user preferences */
@media (prefers-reduced-motion: reduce) {

index

168 / 169

af://h2-267

Scroll snap provides a native CSS solution for creating engaging, app-like scrolling
experiences without JavaScript.

Conclusion
Throughout this handbook, we've explored the fundamental principles of CSS that form the
backbone of modern web design. From basic selectors and the box model to more advanced
concepts like media queries, feature detection, and container queries, you now have a solid
foundation to build upon.

CSS is constantly evolving, with new features being developed and implemented across
browsers regularly. What makes CSS powerful is not just knowing the individual properties
and values, but understanding how they work together to create coherent, responsive, and
accessible web experiences.

Remember that mastering CSS is a journey rather than a destination. The best way to
improve is through practice—building real projects, experimenting with different techniques,
and staying curious about new developments in the field.

Thank you for exploring this CSS handbook. May your styles be clean, your selectors
specific, and your layouts never break!

 html {
 scroll-behavior: auto;
 }

 .carousel {
 scroll-snap-type: none;
 }
}

index

169 / 169

af://h2-268

	Preface
	Legal
	Introduction
	How does CSS look like
	A brief history of CSS
	Adding CSS to an HTML page
	1: Using the link tag
	2: using the style tag
	3: inline styles

	Selectors
	Basic selectors
	Combining selectors
	Targeting an element with a class or id
	Targeting multiple classes
	Combining classes and ids
	Grouping selectors
	Follow the document tree with selectors

	Cascade
	Specificity
	How to calculate specificity
	Slot 1
	Slot 2
	Slot 3
	Slot 4
	Importance
	Considerations on specificity

	Inheritance
	Properties that inherit
	Forcing properties to inherit
	Forcing properties to NOT inherit
	Other special values

	Import
	CSS Nesting
	Basic Nesting Syntax
	Using the & Selector
	Complex Nesting Examples
	Media Queries and Container Queries in Nesting
	CSS Cascade Layers
	Creating and Using Layers
	Anonymous and Nested Layers
	Importing into Layers

	CSS Logical Properties
	Common Logical Properties
	Shorthand Logical Properties
	Logical Values for Positioning

	Modern Color Spaces and Functions
	The oklch() Color Space
	The color-mix() Function
	Wide-Gamut Colors with display-p3

	CSS Custom Properties Throughout
	Basic Usage and Patterns
	Dynamic Theming with Custom Properties
	Component-Scoped Properties

	Best Practices for CSS Nesting

	Attribute selectors
	Attribute presence selectors
	Exact attribute value selectors
	Match an attribute value portion

	Pseudo-classes
	Modern Selectors
	The :has() Selector
	The :is() Selector
	The :where() Selector
	The :not() Selector (Enhanced)

	Pseudo-elements
	Colors
	Named colors
	RGB and RGBa
	Hexadecimal notation
	HSL and HSLa

	Units
	Pixels
	Percentages
	Real-world measurement units
	Relative units
	Viewport units
	Fraction units

	url()
	calc()
	Modern CSS Functions for Responsive Design
	The clamp() Function
	The min() Function
	The max() Function
	Combining Functions
	Practical Examples

	Backgrounds
	Comments
	Fonts
	font-family
	font-weight
	font-stretch
	font-style
	font-size
	font-variant
	font
	Loading custom fonts using @font-face
	A note on performance

	Typography
	text-transform
	text-decoration
	text-align
	vertical-align
	line-height
	text-indent
	text-align-last
	word-spacing
	letter-spacing
	text-shadow
	white-space
	tab-size
	writing-mode
	hyphens
	text-orientation
	direction
	word-break
	overflow-wrap

	Box Model
	Border
	The border style
	The border width
	The border color
	The border shorthand property
	The border radius
	Using images as borders

	Padding
	Specific padding properties
	Using the padding shorthand
	Values accepted

	Margin
	Specific margin properties
	Using the margin shorthand
	Values accepted
	Using auto to center elements
	Using a negative margin

	Box Sizing
	Aspect Ratio and Modern Sizing
	The aspect-ratio Property
	Responsive Images and Videos
	Object Fit and Position
	Modern Sizing Units
	Container Query Units
	Dynamic Viewport Units

	Intrinsic Sizing
	Practical Examples

	Display
	inline
	inline-block
	block
	none

	Positioning
	Static positioning
	Relative positioning
	Absolute positioning
	Fixed positioning
	Sticky positioning

	CSS Transforms
	2D Transforms
	translate()
	rotate()
	scale()
	skew()

	Combining Transforms
	Transform Origin
	3D Transforms
	Practical Examples

	CSS Transitions
	Basic Syntax
	Transition Properties
	transition-property
	transition-duration
	transition-timing-function
	transition-delay

	Practical Examples

	CSS Animations
	Defining Keyframes
	Applying Animations
	Animation Properties
	animation-name
	animation-duration
	animation-timing-function
	animation-delay
	animation-iteration-count
	animation-direction
	animation-fill-mode
	animation-play-state

	Practical Animation Examples
	Performance Tips

	Float for Text Wrapping
	Clearing

	z-index
	CSS Filters and Effects
	Filter Functions
	blur()
	brightness()
	contrast()
	grayscale()
	sepia()
	saturate()
	hue-rotate()
	invert()
	opacity()
	drop-shadow()

	Combining Filters
	Backdrop Filter
	Mix Blend Mode
	Clip Path
	Practical Examples

	Lists
	Error handling
	Flexbox
	Container properties
	Align rows or columns
	Vertical and horizontal alignment
	Change the horizontal alignment
	Change the vertical alignment
	A note on baseline
	Wrap
	Gap Property for Flexbox

	Properties that apply to each single item
	Moving items before / after another one using order
	Vertical alignment using align-self
	Grow or shrink an item if necessary

	CSS Grid
	The basics
	grid-template-columns and grid-template-rows
	Automatic dimensions
	Different columns and rows dimensions
	Adding space between the cells
	Span items on multiple columns and/or rows
	Shorthand syntax

	Using grid-area as a shorthand
	Using span
	More grid configuration
	Using fractions
	Using percentages and rem
	Using repeat()
	Specify a minimum width for a row
	Positioning elements using grid-template-areas
	Adding empty cells in template areas

	Fill a page with a grid
	An example: header, sidebar, content and footer

	Custom Properties (or CSS Variables)
	Media types
	Media queries
	Dark Mode Support with prefers-color-scheme
	Basic Dark Mode Implementation
	Detecting Light Mode Explicitly
	Images and Dark Mode
	Respecting User Preference with JavaScript
	Advanced Dark Mode Patterns
	Best Practices for Dark Mode

	Feature queries
	Using Feature Queries with @supports

	Container Queries
	Setting Up Container Queries

	CSS Scroll Snap
	Scroll Snap Container
	Scroll Snap Alignment
	Scroll Snap Stop
	Scroll Padding and Margin
	Practical Examples
	Image Carousel
	Full Page Sections
	Product Gallery
	Mobile-Friendly Tabs
	Timeline

	Best Practices
	Conclusion

