

Introduction to Astro
Astro is a great tool to build websites.

I use it for a ton of stuff and it's always my default choice when I'm building a website
nowadays.

This is an Astro site. My blog is an Astro site. I have a ton of other Astro sites around. That's
to say, I'm a big fan.

Why is Astro so dear to me?

It's its focus on static sites, in particular content sites, and specifically sites that use
Markdown to manage content. It has a lot of features for sites with a lot of content to
manage.

With a unique DX (developer experience) that makes it super nice to build and maintain a
website.

It's also the perfect introduction to more complex tools, because Astro has components that
use a syntax similar to JSX (used by React), but also supports embedding any kind of
frontend framework to add more interactivity to your pages.

Sites are very fast to build, and most importantly very fast to the user, since the end result is
a static site.

And we can easily host an Astro site on any popular static site hosting like Netlify or
Cloudflare Pages.

Those are just a few reasons.

You can also use Astro to build a SaaS or a site with login and authentication and a
database.

Almost everything is possible.

With that said, let's build our first Astro site!

Your first Astro site
Go into a folder on your computer.

I assume you have Node.js installed, which provides npm and npx .

Run this command:

npm create astro@latest

https://astro.build/
https://flaviocopes.com/
https://www.markdownguide.org/getting-started/
af://h2-1
af://h2-2

The Astro installer prompts you to pick a folder, I chose to name it testingastro

Now pick the “A basic, minimal starter” option, and say “Yes” to the “Install dependencies”
and “Initialize a new git repository” questions:

After a little while, things are set up!

Now open the project in VS Code, or whatever your favorite editor is, and run the Astro
project with npm run dev .

Astro will start on port 4321 , unless you have other things running on that part, in which
case port could be 4322 or another one.

Now you can see this basic starter project in the browser:

The structure of an Astro site
Now that you've installed the basic Astro sample site, it's time to take a look around in the
site structure.

af://h2-3

See, we have 2 folders, except for the VS Code configuration .vscode and the Node
packages in node_modules : public and src , and some configuration files.

public is (as in most frameworks) where you store assets like images that do not need any
kind of processing and are served as-is. For example public contains the favicon.svg
file, and you access it using the URL http://localhost:4321/favicon.svg .

Configuration files include astro.config.mjs , which (as we'll see later) you can extend to
add more features (and configuration) to Astro.

Everything else is under src .

The src folder now includes those subfolders:

src/pages contains the Astro page routes.

src/assets

src/components

src/layouts

src/pages

You now see src/pages/index.astro . This is the entry point for the / route, the one that
serves the homepage.

This is an Astro component, as the file ends with the .astro extension.

Being under src/pages makes it special because it's also a route, so Astro knows this
component is what it will serve on that / route.

We'll see how to add more routes later.

But let's analyze this component. We can see 2 parts basically.

The first is the upper part, between the two --- blocks, called frontmatter:

That's where we can write some JavaScript (TypeScript) code that runs when the page is
built.

This is not client-side JavaScript. It's also not server-side JavaScript. It's build-time
JavaScript.

Since the end result of an Astro site is a static site, it will not have a backend.

So here we can do various things, like fetching data across the network or look for data in
the filesystem.

In this case we import a layout, and a component.

The layout is the "outer HTML" that this page will use.

We commonly use a layout, so you don’t have to define the whole HTML structure for every
page.

See, inside the "main" part of the component, we don't define the DOCTYPE, an <html>
tag, <body> and so on.

That's defined in the layout:

The layout is the "container".

We do this so it can be reused by multiple pages, without duplicating the page structure
that's common across the site.

The <slot /> special element is where the “page” content will be inserted.

We'll see more about layouts later.

So we've seen how Astro page components can have a frontmatter that executes JavaScript
at build time and can be used to import other components.

Finally the last item in this basic starter kit is an example of separating some piece of UI to a
separate component, not a page component, that is defined in src/components as a
convention:

We can define components to create little units of code that we can reuse across the site.

In this example the Welcome component is used in the src/pages/index.astro
component by first importing it in the component frontmatter:

and then it's used in the page component’s HTML template

Components are great because they avoid duplication.

We'll talk more about them next, and we'll see how cool they are.

Astro components
We've created our first Astro site and I introduced components.

Let's now talk more about them.

In their simplest form, components can just be some HTML tags, for example

Create a src/components/Test.astro file with that content, and import that in a page
component:

import Welcome from '../components/Welcome.astro';

<p>test</p>

import Test from '../components/Test.astro'

af://h2-4

…then add it to the component markup as you would write an HTML tag, like this:

IMPORTANT: the component name’s first letter must be uppercase

See, the markup now appears in the page:

<Test />

The syntax:

was borrowed from JSX, a "templating language" introduced by React.

TIP: If you already know JSX, in Astro components the syntax is a little different, because
for example we can have siblings in a tree (no need for fragment or <>) and no need to
use className= to add HTML classes, just class=.

Components can add JavaScript variables in their "frontmatter", and you can use them in the
HTML markup:

Let's now talk about props.

Astro components accept props.

<Test />

const test = 'hello'

<p>{test}</p>

This means you can pass values to a component from a parent component.

For example we can pass a name attribute to the Test component like this:

Inside the Test component we can use this value by adding this to the component
frontmatter:

And now we can use it in the markup, using a special JSX-like syntax that lets us embed
JavaScript inside the HTML:

<Test name="joe" />

const { name } = Astro.props

<p>test</p>

const { name } = Astro.props

<p>test {name}</p>

Here's the result:

And this is how we can embed data in Astro components.

If you had an array, you could print all items in the array using this syntax:

Adding more pages
Now let's try adding more pages to your Astro site.

Create a about.astro file under src/pages

This file represents a new page that listens on the route /about

If you visit http://localhost:4321/about, it works:

const list = [1, 2, 3, 4]

<p>Some numbers:</p>

 {list.map(n => {n})}

http://localhost:4321/about
af://h2-5

The page is a blank page, but no error like you'd get if you went to a route not defined, for
example http://localhost:4321/test:

http://localhost:4321/test:

Now you could add a simple HTML tag to the page, like we did before with the Test
component:

<p>test</p>

If you open the DevTools you'd see a simple HTML structure, without all the <head> and
<body> tags and everything that makes an HTML page "correct":

(the DOCTYPE and the script tag were added by Astro automatically)

You could add a full HTML page structure, complete with html , head and body tags,
directly in the component:

But what you'd usually do is use a layout:

and the src/layouts/Layout.astro will provide the base markup, which is shared with
src/pages/index.astro too.

This is a common way to have a base layout.

You can have multiple layouts, for example if you want to have a layout for single pages, and
a different one with a sidebar for blog posts. For example, I have 4 different layouts in my
site.

To link pages with each other we use the HTML <a> element.

So we can link back to / using:

import Layout from '../layouts/Layout.astro'

<Layout>
 <p>test</p>
</Layout>

import Layout from '../layouts/Layout.astro'

<Layout>
 <p>test</p>
 back to the home page
</Layout>

Astro does not provide client-side navigation by default, so all links do a full-page refresh,
like it happens in plain HTML pages.

However you can easily add view transitions to add client-side navigation, as we'll see
later.

Dynamic routing
We've seen how to create pages, that have a static route.

Sometimes you have the need for dynamic routes.

Dynamic routes allow you to manage multiple different URLs with a single page.

Think about a blog, for example.

You have multiple blog posts, but all use the same structure.

We'll get to writing posts in markdown soon, but let's do a simple example now to explain
dynamic routes.

A dynamic route is created by adding a file with square brackets under src/pages .

Create a file src/pages/[post].astro

src/pages/index.astro has the / route
src/pages/about.astro has the /about route

af://h2-6

post inside the square brackets is the variable that will be passed to the page and will
contain the dynamic segment.

You can grab that from Astro.params in the page frontmatter.

You must however also define and export a getStaticPaths() function, that returns an
array of objects which contain the values allowed for the dynamic segment:

If you go to the /test2 route, that's still a route that's taken care by this file.

import Layout from '../layouts/Layout.astro'
const { post } = Astro.params

export async function getStaticPaths() {
 return [
 { params: { post: 'test' } },
 { params: { post: 'test2' } },
 { params: { post: 'test3' } },
]
}

<Layout title='Post'>
 <h1>{post}</h1>
</Layout>

/test4 would be not, and would generate a 404 page not found message.

Markdown in Astro
You can write content directly in Astro components by writing HTML, but Astro comes with a
very powerful Markdown and MDX engine.

MDX is basically Markdown with superpowers. It allows you to import components and show
them in the page.

af://h2-7

You might not need it most of the time (I don't), but it's supported.

To create a markdown page, you can add it directly into src/pages :

Astro will render this:

You can now tell Astro to use a specific layout for this markdown file, and you can set it in the
frontmatter of the markdown page:

From within the layout you can access any frontmatter variable by importing the frontmatter
from Astro.props :

You usually have the title, the description, maybe a date.

Collections are a handy way to work with lots of markdown files. We'll see them later.

Images

layout: ../layouts/Layout.astro

Contact

You can contact us at ...

const { frontmatter} = Astro.props

af://h2-8

You can add images to the /public folder in your Astro site and they will be accessible
through the browser.

For example upload an image to /public/test.png , you'll be able to reach it at
http://localhost:4321/test.png.

You can use those images in your components by using an HTML tag or
markdown files:

Images stored in /public are served as-is.

layout: ../layouts/Layout.astro

Contact

You can contact us at ...

http://localhost:4321/test.png

However Astro can do a lot more.

But to unlock the functionality you have to store images inside src , for example in a new
folder called src/images .

Now from a page component, for example src/pages/about.astro

we can add images using the HTML tag in this way:

import Layout from '../layouts/Layout.astro'

<Layout title='About'>
 <h1>About</h1>
</Layout>

import Layout from '../layouts/Layout.astro'
import testImage from '../images/test.png'

<Layout title='About'>
 <h1>About</h1>

</Layout>

But we can also use the <Image /> component provided by Astro:

You might get an error, opening the image in a new tab will show a helpful error message
saying "Server Error: MissingSharp: Could not find Sharp. Please install Sharp (sharp)
manually into your project or migrate to another image service."

import { Image } from 'astro:assets';
import Layout from '../layouts/Layout.astro'
import testImage from '../images/test.png'

<Layout title='About'>
 <h1>About</h1>
 <Image src={testImage} alt="some test image" />
</Layout>

Go back to the terminal and run npm install sharp , then restart the Astro dev server with
npm run dev

This is worth doing because now Astro will automatically add to the img tag the image width
and height and makes it load lazily. This improves performance and avoids CLS (cumulative
layout shift) - you know, when you refresh a page and there's a ton of layout shifts when
images load.

This helps you build a better experience for your users.

In addition to <Image /> , Astro also provides a <Picture /> tag that you can use to
generate a <picture> HTML tag which is handy to generate responsive images.

Content layer API
I talked about how to work with Markdown files in a basic way.

If you build a content-heavy site, Astro has a powerful feature you will want to know about:
the content layer API.

One word of caution: Astro 2.0 introduced a feature “content collections”, but that was
deprecated in Astro v5 and considered legacy. If you find old documentation around content
collections, just be aware it might be “the old way”.

The content layer API lets you define content and render it in pages, in a generic way, so you
can use any “content source” to define the content that will be served by your website.

Here I’ll show you how to use it to work with markdown files.

For example we want to show a list of blog posts.

af://h2-9

Create a folder src/posts .

Then create a few blog posts using markdown, for example

This could be the content of src/posts/first.md :

If you were tasked to build an e-learning site, you could have to manage lessons, so those
would live in src/lessons for example. Or src/data/lessons . You can put them
anywhere you want.

Then create a src/content.config.ts file.

By convention, here is where we define our collections.

In there, we define the posts collection like this:

NOTE: the astro:content import might have a red line, because the types are not
generated until you run npm run dev in the terminal, don’t worry.

Each post will have a title, and a date.

src/posts/first.md

src/posts/second.md

src/posts/third.md

title: First
date: 2025-02-22

First post content

import { z, defineCollection } from 'astro:content'
import { glob } from 'astro/loaders'

const posts = defineCollection({
 loader: glob({ pattern: '*.md', base: './src/posts' }),
 schema: z.object({
 title: z.string(),
 date: z.date(),
 }),
})

export const collections = {
 posts: posts,
}

We can add more configuration to add required fields for the frontmatter of each markdown
file, so if you miss for example the tag on a post, Astro will complain. But this is a start.

When we used markdown files before, we created them in the src/pages folder, which
automatically generated the route for us.

With content collections, we have to handle this ourselves

We create a dynamic route under src/pages . Remember how we made a dynamic route
for some test data before?

Now we'll serve content from the posts collection.

Say you want to have a blog in /blog , and each post has the route /blog/<slug> , like
/blog/first and /blog/second

Create a src/pages/blog/[slug].astro

Let's replicate what we had made before with dynamic routes, we got the dynamic parameter
from Astro.params and we had a frontmatter with a getStaticPaths() function exported:

Here's how it works with the content layer API:

import Layout from '../../layouts/Layout.astro'

export async function getStaticPaths() {
 return [
 //...
]
}

<Layout title=''>

</Layout>

import { getCollection, render } from 'astro:content'

import Layout from '../../layouts/Layout.astro'

export async function getStaticPaths() {
 const posts = await getCollection('posts')

 return posts.map(post => ({
 params: { slug: post.id },
 props: { post },

NOTE: the id property of the post is derived from the filename, without the file
extension (first.md → first)

Now we import getCollection from Astro, and we use that to query for all the posts data
using await getCollection('posts') .

We use this data to populate the posts data returned from getStaticPaths() .

The component then when asked to render a single item gets the post data from
Astro.props , and we use this to get a <Content /> component, by calling the render()
function provided by astro:content , that's responsible for displaying the content of the
markdown file.

Finally, we return the markup.

Here's the result:

http://localhost:4321/blog/first

 }))
}

const { post } = Astro.props
const { Content } = await render(post)

<Layout title={post.data.title}>
 <h1>{post.data.title}</h1>
 <Content />
</Layout>

http://localhost:4321/blog/first

CSS in Astro
Let's now see how to include CSS in your Astro site.

We've seen that in .astro components we can add a <style> tag, and inside it we can
write CSS that is scoped to the component.

If you want, you can make those styles global using

You can import a .css file in the component frontmatter:

or by including them in your <html> page structure, in the layout for example:

In this case the CSS file needs to be in the public folder.

To use Tailwind CSS, run the command

<style>

...

</style>

<style global>

...

</style>

is:

import '../styles.css'

<html>
 <head>
 <link rel="stylesheet" href="/styles.css" />
 ...

npx astro add tailwind

af://h2-10

Astro will configure astro.config.mjs to include Tailwind CSS support in the Astro
configuration:

// @ts-check
import { defineConfig } from 'astro/config';

import tailwindcss from '@tailwindcss/vite';

// https://astro.build/config
export default defineConfig({
 **vite: {
 plugins: [tailwindcss()]

and will create a src/styles/global.css file that imports Tailwind, with a single line in it:
@import "tailwindcss"; .

That's it.

You can now use Tailwind classes in your pages and layouts, by importing that CSS file in
the frontmatter:

Running TypeScript code at Build Time
In Astro components we can write JavaScript/TypeScript in the component frontmatter:

 }**
});

import '../styles/global.css'

const name = 'joe'

af://h2-11

and we can use any variable we define inside the markup:

This code is executed at build time.

It's not running in the browser and it's not ran every time a user requests the page.

This can be very useful in many scenarios. For example:

Here's a practical example where we fetch data during build time:

Important considerations when running code at build time:

<p>test</p>

const name = 'joe'

<p>{name}</p>

Fetching data from an API during build

Processing files or data
Performing complex calculations

// This runs at build time only
const response = await fetch('https://api.example.com/data')
const data = await response.json()

<div>
 {data.map(item => (
 <p>{item.name}</p>
))}
</div>

The code only runs once during the build process

You can use Node.js APIs and packages
API calls are made once during build, reducing load on your servers
The output is static HTML, improving performance

If you need dynamic data that changes frequently, you might want to consider client-side
rendering or server-side rendering instead (we’ll see more about this later)

View transitions
By default clicking a link to another page in Astro does a full page reload.

There's a full roundtrip to the browser, with page flickering as the browser has to reload all
the HTML and assets.

There is no client-side navigation by default, and this is a good thing, because Astro does
not ship a ton of JavaScript to handle it.

But if you need it, view transitions can help you.

View transitions are a Web standard that let us create smoother transitions between HTML
pages.

In Astro you can enable view transitions in each individual page, or by adding them to your
layout(s) they will be applied globally.

You import ClientRouter from Astro and include that component in the page head tag:

Now when the user hovers a link (goes over it with the mouse), browsers that support view
transitions are going to prefetch the destination page in the background, store it in their
cache, and when the user clicks, they load that page from their cache.

This can make the site feel very fast.

And on top of that, the browser does a smooth transition between pages.

Running TypeScript code for each request

import { ClientRouter } from "astro:transitions";

<!doctype html>
<html lang="en">

<head>
 <ClientRouter />

</head>
<body>

<slot />
</body>

</html>

af://h2-12
af://h2-13

I mentioned previously how Astro creates a static site, and how you can run TypeScript code
at build time very easily.

However, sometimes you want to run some code for each request.

We call this Server-Side Rendering (SSR).

You can enable it globally (for all the site) or just for some pages.

Perhaps you want to serve some dynamic data from the database. Or whatever.

And still want to use Astro instead of another framework.

In this case, you enable SSR with:

npx astro add node

This changes the astro.config.mjs file to:

import { defineConfig } from 'astro/config'

import node from '@astrojs/node'

// <https://astro.build/config>
export default defineConfig({
 output: 'server',
 adapter: node({

Notice output: 'server' . This makes SSR the default mode, must be disabled on
individual pages by setting:

in the frontmatter.

You can also use output: 'hybrid' and it makes SSR opt-in on individual pages that
should be server-rendered using export const prerender = false .

Now you can do interesting things.

For example we can decide to only show a page if it’s the weekend, otherwise the page is
not shown.

We create a function to detect if today is a weekend day:

and then we can call this function on each page request:

 mode: 'standalone',
 }),
})

export const prerender = true

function isWeekend() {
 const today = new Date();
 const dayOfWeek = today.getDay(); // 0 = Sunday, 6 = Saturday
 return dayOfWeek === 0 || dayOfWeek === 6;
}

import Layout from '../layouts/Layout.astro'

function isWeekend() {
 const today = new Date();
 const dayOfWeek = today.getDay(); // 0 = Sunday, 6 = Saturday
 return dayOfWeek === 0 || dayOfWeek === 6;
}

if (!isWeekend()) {
 //not weekend!
 return new Response(null, {
 status: 404,
 statusText: 'Not found'
 })
}

If the current day is not weekend, we return a 404 error:

The ability to run code server side for each request unlocks a lot of options, including
processing forms, cookies adding authentication, or anything you'd do with a server-side
framework.

API endpoints
One interesting feature we can use in Astro with SSR enabled is API endpoints.

To create an endpoint you add a file ending with .json.ts in the src/pages folder, and it
will be an API route with GET, POST and the other HTTP methods.

For example create this file:

src/pages/todos.json.ts

<Layout title='Homepage'>
 <h1>Homepage</h1>
 See blog post
</Layout>

af://h2-14

You can define a GET API endpoint by exporting a GET function:

You can return some JSON now by returning a new Response object with a JSON response:

Hit http://localhost:4321/todos.json to see the JSON returned from your API endpoint:

I returned a hardcoded set of data, but I could have hooked a database here.

You can inspect any data received in the URL using the params parameter (only in GET
requests), and the request data in request .

For example you can inspect the body using await request.json() and header data
using request.headers .

Just as we did a GET endpoint, we can add an HTTP POST endpoint using a POST function

import type { APIRoute } from 'astro';

export const GET: APIRoute = ({ params, request }) => {

}

import type { APIRoute } from 'astro'

export const GET: APIRoute = ({ params, request }) => {
 return new Response(JSON.stringify([

 'Buy the milk',
 'Write a blog post'
]))

}

export const POST: APIRoute = async ({ request }) => {

http://localhost:4321/todos.json

For example we can console.log() on the server any data coming in the request headers
and the request body:

You could use this to add data to a database, handle form submissions, and what not.

}

import type { APIRoute } from 'astro'

export const POST: APIRoute = async ({ request }) => {
 console.log(request.headers)
 console.log(await request.json())
 return new Response()
}

	Introduction to Astro
	Your first Astro site
	The structure of an Astro site
	Astro components
	Adding more pages
	Dynamic routing
	Markdown in Astro
	Images
	Content layer API
	CSS in Astro
	Running TypeScript code at Build Time
	View transitions
	Running TypeScript code for each request
	API endpoints

