Beej’s Guide to Network Programming

Using Internet Sockets

Brian “Beej Jorgensen” Hall

v3.2.11, Copyright © July 8, 2025

Contents

1 Intro
1.1 Audience e
1.2 Platformand Compiler
1.3 Official Homepage and Books For Sale
1.4 Note for Solaris/SunOS/illumos Programmers
1.5 Note for Windows Programmers v v v v v v v et e
1.6 EmailPolicy e
1.7 MIIToring e e e e e e e e e e e
1.8 Note for Translators e
1.9 Copyright, Distribution, and Legal
1.10 Dedication L e e e e e e
1.11 Publishing Information

2 What is a socket?
2.1 Two Types of Internet Sockets
2.2 Low level Nonsense and Network Theory

3 IP Addresses, structs, and Data Munging

3.1 IP Addresses, versions4and 6
3.1 Subnets. e e e e e e e e
3.1.2 PortNumbers e
3.2 ByteOrder e e
3.3 SErUCES . . . o o e e e e e e e e e e
3.4 IP Addresses, Part DeuxX v v i e e e e e e e e e e e e
3.4.1 Private (Or Disconnected) Networks

4 Jumping from IPv4 to IPv6

5 System Calls or Bust

5.1 getaddrinfo()—Preparetolaunch!
5.2 socket ()—Get the File Descriptor!,
5.3 bind()—WhatportamIon?. L
5.4 connect()—Hey,you!
5.5 listen()—Will somebody please callme?
5.6 accept()—“Thank you for calling port 3490.”
5.7 send() and recv()—Talktome,baby!,
5.8 sendto() and recvfrom()—Talk to me, DGRAM-style
5.9 close() and shutdown()—Get outtamy face!
5.10 getpeername()—Whoareyou?
5.11 gethostname()—WhoamI?,

6 Client-Server Background

6.1 A Simple Stream Server e e
6.2 ASimpleStream Client.
6.3 Datagram Sockets

7 Slightly Advanced Techniques
7.1 Blocking e

iii

U U AR BMNBIMNRRRR M

[c<BRN N

1
11
12
13
13
14
17
18

19

21
21
24
25
27
28
28
29
30
31
32
32

35
35
38
40

45

iv

8

9

10 More References

7.2 pol1l()—Synchronous I/O Multiplexing
7.3 select ()—Synchronous I/O Multiplexing, Old School
7.4 Handling Partial send()s
7.5 Serialization—How to Pack Data
7.6 Son of Data Encapsulation
7.7 Broadcast Packets—Hello, World!

Common Questions

Man Pages

9.1 accept()
9.2 bind()
9.3 connect()
9.4 close()
9.5 getaddrinfo(), freeaddrinfo(), gai_strerror()
9.6 gethostname()
9.7 gethostbyname(), gethostbyaddr ()
9.8 getnameinfo()
9.9 getpeername()

9.10 errno

9.11 fentl()
9.12 htons(), htonl(), ntohs(), ntohl()
9.13 inet_ntoa(), inet_aton(), inet_addr
9.14 inet_ntop(), inet_pton()
9.15 listen()
9.16 perror(), strerror()
9.17 poll()
9.18 recv(), recvfrom()
9.19 select()
9.20 setsockopt(), getsockopt()
9.21 send(), sendto()
9.22 shutdown()
9.23 socket()

9.24 struct sockaddr and pals

10.1 Books

10.2 Web References

10.3 RFCs

CONTENTS

Chapter 1

Intro

Hey! Socket programming got you down? Is this stuff just a little too difficult to figure out from the man
pages? You want to do cool Internet programming, but you don’t have time to wade through a gob of
structs trying to figure out if you have to call bind() before you connect (), etc., etc.

Well, guess what! I've already done this nasty business, and I’m dying to share the information with ev-
eryone! You’ve come to the right place. This document should give the average competent C programmer
the edge s/he needs to get a grip on this networking noise.

And check it out: I’ve finally caught up with the future (just in the nick of time, too!) and have updated
the Guide for IPv6! Enjoy!

1.1 Audience

This document has been written as a tutorial, not a complete reference. It is probably at its best when
read by individuals who are just starting out with socket programming and are looking for a foothold. It
is certainly not the complete and total guide to sockets programming, by any means.

Hopefully, though, it’ll be just enough for those man pages to start making sense... : -)

1.2 Platform and Compiler

The code contained within this document was compiled on a Linux PC using Gnu’s gcc compiler. It
should, however, build on just about any platform that uses gcc. Naturally, this doesn’t apply if you’re
programming for Windows—see the section on Windows programming, below.

1.3 Official Homepage and Books For Sale

This official location of this document is:

* https://beej.us/guide/bgnet/
There you will also find example code and translations of the guide into various languages.
To buy nicely bound print copies (some call them “books”), visit:

* https://beej.us/guide/url/bgbuy

I’ll appreciate the purchase because it helps sustain my document-writing lifestyle!

1.4 Note for Solaris/SunOS/illumos Programmers

When compiling for a Solaris variant or SunOS, you need to specify some extra command-line switches
for linking in the proper libraries. In order to do this, simply add “-1lns1 - lsocket -lresolv” to the

1

https://beej.us/guide/bgnet/
https://beej.us/guide/url/bgbuy

2 Chapter 1. Intro

end of the compile command, like so:

$ cc -0 server server.c -lnsl -1lsocket -lresolv }

If you still get errors, you could try further adding a - 1xnet to the end of that command line. I don’t know
what that does, exactly, but some people seem to need it.

Another place that you might find problems is in the call to setsockopt (). The prototype differs from
that on my Linux box, so instead of:

int yes=1;

enter this:

char yes='1";

As I don’t have a Sun box, I haven’t tested any of the above information—it’s just what people have told
me through email.

1.5 Note for Windows Programmers

At this point in the guide, historically, I’ve done a bit of bagging on Windows, simply due to the fact that
I don’t like it very much. But then Windows and Microsoft (as a company) got a lot better. Windows 10
coupled with WSL (below) actually makes for a decent operating system. Not really a lot to complain
about.

Well, a little—for example, I’m writing this (in 2025) on a 2015 laptop that used to run Windows 10.
Eventually it got too slow and I installed Linux on it. And have been using it ever since.

But now we have Windows 11 that apparently requires beefier hardware than Windows 10. I’'m not a fan
of that. The OS should be as unobtrusive as possible and not require you to spend more money. The extra
CPU power should be for apps, not the OS! Additionally, Microsoft knows what you want, and what you
want is more advertising! Right? In your operating system! Weren’t you missing that? Now you can have
it with Windows 11.

3

So... I still encourage you to try Linux!, BSD?, illumos® or any other flavor of Unix instead of Windows.

How’d that soapbox get there?

But people like what they like, and you Windows folk will be pleased to know that this information is
generally applicable to Windows, with a few minor changes.

One thing that you should strongly consider is the Windows Subsystem for Linux*. This basically allows
you to install a Linux VM-ish thing on Windows 10. That will also definitely get you situated, and you’ll
be able to build and run these programs as is.

Another thing you can do is install Cygwin®, which is a collection of Unix tools for Windows. I’ve heard
on the grapevine that doing so allows all these programs to compile unmodified, but I’ve never tried it.

Some of you might want to do things the Pure Windows Way. That’s very gutsy of you, and this is what
you have to do: run out and get Unix immediately! No, no—I’m kidding. I’m supposed to be Windows-
friendly(er) these days...

Okay, okay. I’ll get on with it.

This is what you’ll have to do: first, ignore pretty much all of the system header files I mention in here.
Instead, include:

Thttps://www.linux.com/

Zhttps://bsd.org/

3https://www.illumos.org/
“https://learn.microsoft.com/en-us/windows/wsl/
Shttps://cygwin.com/

https://www.linux.com/
https://bsd.org/
https://www.illumos.org/
https://learn.microsoft.com/en-us/windows/wsl/
https://cygwin.com/

1.5. Note for Windows Programmers 3

#include <winsock2.h>
#include <ws2tcpip.h>

winsock? is the “new” (circa 1994) version of the Windows socket library.

Unfortunately, if you include windows . h, it automatically pulls in the older winsock. h (version 1) header
file which conflicts with winsock2.h! Fun times.

So if you have to include windows . h, you need to define a macro to get it to not include the older header:

#define WIN32_LEAN_AND_MEAN // Say this...

#inc lude <windows.h> // And now we can include that.
#include <winsock2.h> // And this.

Wait! You also have to make a call to WSAStartup() before doing anything else with the sockets library.
You pass in the Winsock version you desire to this function (e.g. version 2.2). And then you can check
the result to make sure that version is available.

The code to do that looks something like this:

#include <winsock2.h>

WSADATA wsaData;

if (WSAStartup(MAKEWORD(2, 2), &wsabata) != 0) {
fprintf(stderr, "WSAStartup failed.\n");

exit(1);
}
if (LOBYTE(wsaData.wVersion) != 2 ||
HIBYTE(wsaData.wVersion) != 2)
{
fprintf(stderr,"Version 2.2 of Winsock not available.\n");
WSACleanup();
exit(2);
}

Note that call to WSACleanup () in there. That’s what you want to call when you’re done with the Winsock
library.

You also have to tell your compiler to link in the Winsock library, called ws2_32.1ib for Winsock 2.
Under VC++, this can be done through the Project menu, under Settings. . .. Click the Link tab, and
look for the box titled “Object/library modules”. Add “ws2_32.1ib” (or whichever lib is your preference)
to that list.

Or so I hear.

Once you do that, the rest of the examples in this tutorial should generally apply, with a few exceptions.
For one thing, you can’t use close () to close a socket—you need to use cLlosesocket (), instead. Also,
select () only works with socket descriptors, not file descriptors (like @ for stdin).

There is also a socket class that you can use, CSocket Check your compiler’s help pages for more infor-
mation.

To get more information about Winsock, check out the official page at Microsoft.

Finally, I hear that Windows has no fork() system call which is, unfortunately, used in some of my
examples. Maybe you have to link in a POSIX library or something to get it to work, or you can use
CreateProcess() instead. fork() takes no arguments, and CreateProcess() takes about 48 billion
arguments. If you’re not up to that, the CreateThread() is a little easier to digest...unfortunately a

https://learn.microsoft.com/en-us/cpp/mfc/reference/csocket-class?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/winsock/windows-sockets-start-page-2

4 Chapter 1. Intro

discussion about multithreading is beyond the scope of this document. I can only talk about so much, you
know!

Extra finally, Steven Mitchell has ported a number of the examples® to Winsock. Check that stuff out.

1.6 Email Policy

I’'m generally available to help out with email questions so feel free to write in, but I can’t guarantee a
response. I lead a pretty busy life and there are times when I just can’t answer a question you have. When
that’s the case, I usually just delete the message. It’s nothing personal; I just won’t ever have the time to
give the detailed answer you require.

As a rule, the more complex the question, the less likely I am to respond. If you can narrow down your
question before mailing it and be sure to include any pertinent information (like platform, compiler, error
messages you’re getting, and anything else you think might help me troubleshoot), you’re much more
likely to get a response. For more pointers, read ESR’s document, How To Ask Questions The Smart
Way’.

If you don’t get a response, hack on it some more, try to find the answer, and if it’s still elusive, then write
me again with the information you’ve found and hopefully it will be enough for me to help out.

Now that I’ve badgered you about how to write and not write me, I’d just like to let you know that I fully
appreciate all the praise the guide has received over the years. It’s a real morale boost, and it gladdens me
to hear that it is being used for good! :-) Thank you!

1.7 Mirroring

You are more than welcome to mirror this site, whether publicly or privately. If you publicly mirror the
site and want me to link to it from the main page, drop me a line at beej@beej . us.

1.8 Note for Translators

If you want to translate the guide into another language, write me at beej@beej . us and I’ll link to your
translation from the main page. Feel free to add your name and contact info to the translation.

This source markdown document uses UTF-8 encoding.
Please note the license restrictions in the Copyright, Distribution, and Legal section, below.

If you want me to host the translation, just ask. I’1l also link to it if you want to host it; either way is fine.

1.9 Copyright, Distribution, and Legal

Beej’s Guide to Network Programming is Copyright © 2019 Brian “Beej Jorgensen” Hall.

With specific exceptions for source code and translations, below, this work is licensed under the Creative
Commons Attribution- Noncommercial- No Derivative Works 3.0 License. To view a copy of this license,
visit

https://creativecommons.org/licenses/by-nc-nd/3.0/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

One specific exception to the “No Derivative Works” portion of the license is as follows: this guide may
be freely translated into any language, provided the translation is accurate, and the guide is reprinted in
its entirety. The same license restrictions apply to the translation as to the original guide. The translation
may also include the name and contact information for the translator.

Shttps://www.tallyhawk.net/WinsockExamples/
"http://www.catb.org/~esr/faqs/smart-questions.html

https://www.tallyhawk.net/WinsockExamples/
http://www.catb.org/~esr/faqs/smart-questions.html
http://www.catb.org/~esr/faqs/smart-questions.html
beej@beej.us
beej@beej.us
https://creativecommons.org/licenses/by-nc-nd/3.0/

1.10. Dedication 5

The C source code presented in this document is hereby granted to the public domain, and is completely
free of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their students.

Unless otherwise mutually agreed by the parties in writing, the author offers the work as-is and makes
no representations or warranties of any kind concerning the work, express, implied, statutory or other-
wise, including, without limitation, warranties of title, merchantability, fitness for a particular purpose,
noninfringement, or the absence of latent or other defects, accuracy, or the presence of absence of errors,
whether or not discoverable.

Except to the extent required by applicable law, in no event will the author be liable to you on any legal
theory for any special, incidental, consequential, punitive or exemplary damages arising out of the use of
the work, even if the author has been advised of the possibility of such damages.

Contact beej@beej . us for more information.

1.10 Dedication

Thanks to everyone who has helped in the past and future with me getting this guide written. And thank
you to all the people who produce the Free software and packages that I use to make the Guide: GNU,
Linux, Slackware, vim, Python, Inkscape, pandoc, many others. And finally a big thank-you to the literally
thousands of you who have written in with suggestions for improvements and words of encouragement.

I dedicate this guide to some of my biggest heroes and inpirators in the world of computers: Donald Knuth,
Bruce Schneier, W. Richard Stevens, and The Woz, my Readership, and the entire Free and Open Source
Software Community.

1.11 Publishing Information

This book is written in Markdown using the vim editor on an Arch Linux box loaded with GNU tools.
The cover “art” and diagrams are produced with Inkscape. The Markdown is converted to HTML and
LaTex/PDF by Python, Pandoc and XeLaTeX, using Liberation fonts. The toolchain is composed of 100%
Free and Open Source Software.

mailto:beej@beej.us

Chapter 1. Intro

Chapter 2

What is a socket?

You hear talk of “sockets” all the time, and perhaps you are wondering just what they are exactly. Well,
they’re this: a way to speak to other programs using standard Unix file descriptors.

What?

Ok—you may have heard some Unix hacker state, “Jeez, everything in Unix is a file!” What that person
may have been talking about is the fact that when Unix programs do any sort of I/O, they do it by reading
or writing to a file descriptor. A file descriptor is simply an integer associated with an open file. But (and
here’s the catch), that file can be a network connection, a FIFO, a pipe, a terminal, a real on-the-disk file,
or just about anything else. Everything in Unix is a file! So when you want to communicate with another
program over the Internet you’re gonna do it through a file descriptor, you’d better believe it.

“Where do I get this file descriptor for network communication, Mr. Smarty-Pants?” is probably the last
question on your mind right now, but I’'m going to answer it anyway: You make a call to the socket ()
system routine. It returns the socket descriptor, and you communicate through it using the specialized
send() and recv() (man send, man recv) socket calls.

“But, hey!” you might be exclaiming right about now. “If it’s a file descriptor, why in the name of Neptune
can’t I just use the normal read() and write() calls to communicate through the socket?” The short
answer is, “You can!” The longer answer is, “You can, but send() and recv () offer much greater control
over your data transmission.”

What next? How about this: there are all kinds of sockets. There are DARPA Internet addresses (Internet
Sockets), path names on a local node (Unix Sockets), CCITT X.25 addresses (X.25 Sockets that you can
safely ignore), and probably many others depending on which Unix flavor you run. This document deals
only with the first: Internet Sockets.

2.1 Two Types of Internet Sockets

What’s this? There are two types of Internet sockets? Yes. Well, no. I'm lying. There are more, but I
didn’t want to scare you. I’'m only going to talk about two types here. Except for this sentence, where I’'m
going to tell you that “Raw Sockets” are also very powerful and you should look them up.

All right, already. What are the two types? One is “Stream Sockets”; the other is “Datagram Sockets”,
which may hereafter be referred to as “SOCK_STREAM” and “SOCK_DGRAM”, respectively. Datagram sock-
ets are sometimes called “connectionless sockets”. (Though they can be connect ()’d if you really want.
See connect (), below.)

Stream sockets are reliable two-way connected communication streams. If you output two items into the
socket in the order “1, 2”, they will arrive in the order “1, 2” at the opposite end. They will also be error-
free. I’m so certain, in fact, they will be error-free, that I’m just going to put my fingers in my ears and
chant la la la la if anyone tries to claim otherwise.

What uses stream sockets? Well, you may have heard of the telnet or ssh applications, yes? They use
stream sockets. All the characters you type need to arrive in the same order you type them, right? Also,

8 Chapter 2. What is a socket?

web browsers use the Hypertext Transfer Protocol (HTTP) which uses stream sockets to get pages. Indeed,
if you telnet to a web site on port 80, and type “GET / HTTP/1.0” and hit RETURN twice, it’ll dump the
HTML back at you!

If you don’t have telnet installed and don’t want to install it, or your te lnet is being picky about
connecting to clients, the guide comes with a telnet-like program called telnot®. This should
work well for all the needs of the guide. (Note that telnet is actually a spec’d networking protocol®,
and telnot doesn’t implement this protocol at all.)

9https://beej.us/guide/bgnet/source/examples/telnot.c
bhttps://tools.ietf.org/html/rfc854

How do stream sockets achieve this high level of data transmission quality? They use a protocol called
“The Transmission Control Protocol”, otherwise known as “TCP” (see RFC 793" for extremely detailed
info on TCP). TCP makes sure your data arrives sequentially and error-free. You may have heard “TCP”
before as the better half of “TCP/IP” where “IP” stands for “Internet Protocol” (see RFC 7912). IP deals
primarily with Internet routing and is not generally responsible for data integrity.

Cool. What about Datagram sockets? Why are they called connectionless? What is the deal, here, any-
way? Why are they unreliable? Well, here are some facts: if you send a datagram, it may arrive. It may
arrive out of order. If it arrives, the data within the packet will be error-free.

Datagram sockets also use IP for routing, but they don’t use TCP; they use the “User Datagram Protocol”,
or “UDP” (see RFC 768%).

Why are they connectionless? Well, basically, it’s because you don’t have to maintain an open connection
as you do with stream sockets. You just build a packet, slap an IP header on it with destination information,
and send it out. No connection needed. They are generally used either when a TCP stack is unavailable
or when a few dropped packets here and there don’t mean the end of the Universe. Sample applications:
tftp (trivial file transfer protocol, a little brother to FTP), dhcpcd (a DHCP client), multiplayer games,
streaming audio, video conferencing, etc.

“Wait a minute! tftp and dhcpced are used to transfer binary applications from one host to another! Data
can’t be lost if you expect the application to work when it arrives! What kind of dark magic is this?”

Well, my human friend, tftp and similar programs have their own protocol on top of UDP. For example,
the tftp protocol says that for each packet that gets sent, the recipient has to send back a packet that says,
“I got it!” (an “ACK?” packet). If the sender of the original packet gets no reply in, say, five seconds, he’ll
re-transmit the packet until he finally gets an ACK. This acknowledgment procedure is very important
when implementing reliable SOCK_DGRAM applications.

For unreliable applications like games, audio, or video, you just ignore the dropped packets, or perhaps try
to cleverly compensate for them. (Quake players will know the manifestation of this effect by the technical
term: accursed lag. The word “accursed”, in this case, represents any extremely profane utterance.)

Why would you use an unreliable underlying protocol? Two reasons: speed and speed. It’s way faster
to fire-and-forget than it is to keep track of what has arrived safely and make sure it’s in order and all
that. If you’re sending chat messages, TCP is great; if you’re sending 40 positional updates per second of
the players in the world, maybe it doesn’t matter so much if one or two get dropped, and UDP is a good
choice.

2.2 Low level Nonsense and Network Theory

Since I just mentioned layering of protocols, it’s time to talk about how networks really work, and to show
some examples of how SOCK_DGRAM packets are built. Practically, you can probably skip this section. It’s
good background, however.

Hey, kids, it’s time to learn about Data Encapsulation! This is very very important. It’s so important that
you might just learn about it if you take the networks course here at Chico State ; -). Basically, it says

Thttps://tools.ietf.org/html/rfc793
Zhttps://tools.ietf.org/html/rfc791
3https://tools.ietf.org/html/rfc768

https://beej.us/guide/bgnet/source/examples/telnot.c
https://tools.ietf.org/html/rfc854
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc768

2.2. Low level Nonsense and Network Theory 9

Ethernet | IP|UDP TFTP|Data

Figure 2.1: Data Encapsulation.

this: a packet is born, the packet is wrapped (“encapsulated”) in a header (and rarely a footer) by the first
protocol (say, the TFTP protocol), then the whole thing (TFTP header included) is encapsulated again by
the next protocol (say, UDP), then again by the next (IP), then again by the final protocol on the hardware
(physical) layer (say, Ethernet).

When another computer receives the packet, the hardware strips the Ethernet header, the kernel strips the
IP and UDP headers, the TETP program strips the TFTP header, and it finally has the data.

Now I can finally talk about the infamous Layered Network Model (aka “ISO/OSI”). This Network Model
describes a system of network functionality that has many advantages over other models. For instance, you
can write sockets programs that are exactly the same without caring how the data is physically transmitted
(serial, thin Ethernet, AUI, whatever) because programs on lower levels deal with it for you. The actual
network hardware and topology is transparent to the socket programmer.

Without any further ado, Il present the layers of the full-blown model. Remember this for network class
exams:

+ Application
* Presentation
¢ Session
 Transport

* Network

e Data Link

* Physical

The Physical Layer is the hardware (serial, Ethernet, etc.). The Application Layer is just about as far from
the physical layer as you can imagine—it’s the place where users interact with the network.

Now, this model is so general you could probably use it as an automobile repair guide if you really wanted
to. A layered model more consistent with Unix might be:

 Application Layer (telnet, ftp, etc.)

» Host-to-Host Transport Layer (TCP, UDP)

« Internet Layer (IP and routing)

» Network Access Layer (Ethernet, wi-fi, or whatever)

At this point in time, you can probably see how these layers correspond to the encapsulation of the original
data.

See how much work there is in building a simple packet? Jeez! And you have to type in the packet headers
yourself using “cat”! Just kidding. All you have to do for stream sockets is send () the data out. All you
have to do for datagram sockets is encapsulate the packet in the method of your choosing and sendto ()
it out. The kernel builds the Transport Layer and Internet Layer on for you and the hardware does the
Network Access Layer. Ah, modern technology.

So ends our brief foray into network theory. Oh yes, I forgot to tell you everything I wanted to say about
routing: nothing! That’s right, I'm not going to talk about it at all. The router strips the packet to the IP
header, consults its routing table, blah blah blah. Check out the IP RFC* if you really really care. If you
never learn about it, well, you’ll live.

“https://tools.ietf.org/html/rfc791

https://tools.ietf.org/html/rfc791

10

Chapter 2. What is a socket?

Chapter 3

IP Addresses, structs, and Data
Munging

Here’s the part of the game where we get to talk code for a change.

But first, let’s discuss more non-code! Yay! First I want to talk about IP addresses and ports for just a tad
so we have that sorted out. Then we’ll talk about how the sockets API stores and manipulates IP addresses
and other data.

3.1 IP Addresses, versions 4 and 6

In the good old days back when Ben Kenobi was still called Obi Wan Kenobi, there was a wonderful
network routing system called The Internet Protocol Version 4, also called IPv4. It had addresses made
up of four bytes (A.K.A. four “octets”), and was commonly written in “dots and numbers” form, like so:
192.0.2.111.

You’ve probably seen it around.
In fact, as of this writing, virtually every site on the Internet uses IPv4.

Everyone, including Obi Wan, was happy. Things were great, until some naysayer by the name of Vint
Cerf warned everyone that we were about to run out of IPv4 addresses!

(Besides warning everyone of the Coming IPv4 Apocalypse Of Doom And Gloom, Vint Cerf! is also well-
known for being The Father Of The Internet. So I really am in no position to second-guess his judgment.)

Run out of addresses? How could this be? I mean, there are like billions of IP addresses in a 32-bit IPv4
address. Do we really have billions of computers out there?

Yes.

Also, in the beginning, when there were only a few computers and everyone thought a billion was an
impossibly large number, some big organizations were generously allocated millions of IP addresses for
their own use. (Such as Xerox, MIT, Ford, HP, IBM, GE, AT&T, and some little company called Apple,
to name a few.)

In fact, if it weren’t for several stopgap measures, we would have run out a long time ago.

But now we’re living in an era where we’re talking about every human having an IP address, every com-
puter, every calculator, every phone, every parking meter, and (why not) every puppy dog, as well.

And so, IPv6 was born. Since Vint Cerf is probably immortal (even if his physical form should pass on,
heaven forbid, he is probably already existing as some kind of hyper-intelligent ELIZA? program out in
the depths of the Internet2), no one wants to have to hear him say again “I told you so” if we don’t have
enough addresses in the next version of the Internet Protocol.

Thttps://en.wikipedia.org/wiki/Vint_Cerf
Zhttps://en.wikipedia.org/wiki/ELIZA

11

https://en.wikipedia.org/wiki/Vint_Cerf
https://en.wikipedia.org/wiki/ELIZA

12 Chapter 3. IP Addresses, structs, and Data Munging

What does this suggest to you?

That we need a lot more addresses. That we need not just twice as many addresses, not a billion times as
many, not a thousand trillion times as many, but 79 MILLION BILLION TRILLION times as many possible
addresses! That’ll show ’em!

You’re saying, “Beej, is that true? I have every reason to disbelieve large numbers.” Well, the difference
between 32 bits and 128 bits might not sound like a lot; it’s only 96 more bits, right? But remember, we’re
talking powers here: 32 bits represents some 4 billion numbers (22%), while 128 bits represents about 340
trillion trillion trillion numbers (for real, 2'%%). That’s like a million IPv4 Internets for every single star in
the Universe.

Forget this dots-and-numbers look of IPv4, too; now we’ve got a hexadecimal representation, with each
two-byte chunk separated by a colon, like this:

2001:0db8:c9d2:aee5:73e3:934a:a5ae: 9551

That’s not all! Lots of times, you’ll have an IP address with lots of zeros in it, and you can compress them
between two colons. And you can leave off leading zeros for each byte pair. For instance, each of these
pairs of addresses are equivalent:

2001:0db8:¢c9d2:0012:0000:0000:0000: 0051
2001:db8:c9d2:12::51

2001:0db8:ab00:0000:0000:0000:0000: 0000
2001:db8:ab0o::

0000:0000:0000:0000:0000:0000:0000:0001
il

The address : : 1 is the loopback address. It always means “this machine I’m running on now”. In IPv4,
the loopback address is 127.0.0.1.

Finally, there’s an IPv4-compatibility mode for IPv6 addresses that you might come across. If you want,
for example, to represent the IPv4 address 192.0. 2. 33 as an IPv6 address, you use the following notation:
“riffff:192.0.2.33".

We’re talking serious fun.

In fact, it’s such serious fun, that the Creators of IPv6 have quite cavalierly lopped off trillions and trillions
of addresses for reserved use, but we have so many, frankly, who’s even counting anymore? There are
plenty left over for every man, woman, child, puppy, and parking meter on every planet in the galaxy.
And believe me, every planet in the galaxy has parking meters. You know it’s true.

3.1.1 Subnets

For organizational reasons, it’s sometimes convenient to declare that “this first part of this IP address up
through this bit is the network portion of the IP address, and the remainder is the host portion.

For instance, with IPv4, you might have 192.0.2.12, and we could say that the first three bytes are the
network and the last byte was the host. Or, put another way, we’re talking about host 12 on network
192.0.2.0 (see how we zero out the byte that was the host).

And now for more outdated information! Ready? In the Ancient Times, there were “classes” of subnets,
where the first one, two, or three bytes of the address was the network part. If you were lucky enough
to have one byte for the network and three for the host, you could have 24 bits-worth of hosts on your
network (16 million or so). That was a “Class A” network. On the opposite end was a “Class C”, with
three bytes of network, and one byte of host (256 hosts, minus a couple that were reserved).

So as you can see, there were just a few Class As, a huge pile of Class Cs, and some Class Bs in the
middle.

3.2. Byte Order 13

The network portion of the IP address is described by something called the netmask, which you bitwise-
AND with the IP address to get the network number out of it. The netmask usually looks something like
255.255.255.0. (E.g. with that netmask, if your IP is 192.0.2.12, then your network is 192.0.2.12
AND 255.255.255.0 which gives 192.0.2.0.)

Unfortunately, it turned out that this wasn’t fine-grained enough for the eventual needs of the Internet;
we were running out of Class C networks quite quickly, and we were most definitely out of Class As, so
don’t even bother to ask. To remedy this, The Powers That Be allowed for the netmask to be an arbitrary
number of bits, not just 8, 16, or 24. So you might have a netmask of, say 255.255.255.252, which is
30 bits of network, and 2 bits of host allowing for four hosts on the network. (Note that the netmask is
ALWAYS a bunch of 1-bits followed by a bunch of 0-bits.)

But it’s a bit unwieldy to use a big string of numbers like 255.192.0.0 as a netmask. First of all, people
don’t have an intuitive idea of how many bits that is, and secondly, it’s really not compact. So the New
Style came along, and it’s much nicer. You just put a slash after the IP address, and then follow that by
the number of network bits in decimal. Like this: 192.0.2.12/30.

Or, for IPv6, something like this: 2001:db8: : /32 or 2001:db8:5413:4028: :9db9/64.

3.1.2 Port Numbers

If you’ll kindly remember, I presented you earlier with the Layered Network Model which had the Internet
Layer (IP) split off from the Host-to-Host Transport Layer (TCP and UDP). Get up to speed on that before
the next paragraph.

Turns out that besides an IP address (used by the IP layer), there is another address that is used by TCP
(stream sockets) and, coincidentally, by UDP (datagram sockets). It is the port number. It’s a 16-bit
number that’s like the local address for the connection.

Think of the IP address as the street address of a hotel, and the port number as the room number. That’s a
decent analogy; maybe later I’ll come up with one involving the automobile industry.

Say you want to have a computer that handles incoming mail AND web services—how do you differentiate
between the two on a computer with a single IP address?

Well, different services on the Internet have different well-known port numbers. You can see them all in
the Big IANA Port List® or, if you’re on a Unix box, in your /etc/services file. HTTP (the web) is
port 80, telnet is port 23, SMTP is port 25, the game DOOM?* used port 666, etc. and so on. Ports under
1024 are often considered special, and usually require special OS privileges to use.

And that’s about it!

3.2 Byte Order

By Order of the Realm! There shall be two byte orderings, hereafter to be known as Lame and Magnifi-
cent!

I joke, but one really is better than the other. : -)

There really is no easy way to say this, so I’ll just blurt it out: your computer might have been storing
bytes in reverse order behind your back. I know! No one wanted to have to tell you.

The thing is, everyone in the Internet world has generally agreed that if you want to represent the two-byte
hex number, say b34f, you’ll store it in two sequential bytes b3 followed by 4f. Makes sense, and, as
Wilford Brimley® would tell you, it’s the Right Thing To Do. This number, stored with the big end first,
is called Big-Endian.

Unfortunately, a few computers scattered here and there throughout the world, namely anything with an
Intel or Intel-compatible processor, store the bytes reversed, so b34f would be stored in memory as the
sequential bytes 4f followed by b3. This storage method is called Little-Endian.

3https://www.iana.org/assignments/port-numbers
“https://en.wikipedia.org/wiki/Doom_(1993_video_game)
Shttps://en.wikipedia.org/wiki/Wilford_Brimley

https://www.iana.org/assignments/port-numbers
https://en.wikipedia.org/wiki/Doom_(1993_video_game)
https://en.wikipedia.org/wiki/Wilford_Brimley

14 Chapter 3. IP Addresses, structs, and Data Munging

But wait, I'm not done with terminology yet! The more-sane Big-Endian is also called Network Byte
Order because that’s the order us network types like.

Your computer stores numbers in Host Byte Order. If it’s an Intel 80x86, Host Byte Order is Little-Endian.
If it’s a Motorola 68k, Host Byte Order is Big-Endian. If it’s a PowerPC, Host Byte Order is... well, it
depends!

A lot of times when you’re building packets or filling out data structures you’ll need to make sure your
two- and four-byte numbers are in Network Byte Order. But how can you do this if you don’t know the
native Host Byte Order?

Good news! You just get to assume the Host Byte Order isn’t right, and you always run the value through
a function to set it to Network Byte Order. The function will do the magic conversion if it has to, and this
way your code is portable to machines of differing endianness.

All righty. There are two types of numbers that you can convert: short (two bytes) and long (four bytes).
These functions work for the unsigned variations as well. Say you want to convert a short from Host
Byte Order to Network Byte Order. Start with “h” for “host”, follow it with “to”, then “n” for “network”,
and “s” for “short”: h-to-n-s, or htons() (read: “Host to Network Short”).

It’s almost too easy...

You can use every combination of “n”, “h”, “s”, and “I1” you want, not counting the really stupid ones. For
example, there is NOT a stolh() (“Short to Long Host”) function—not at this party, anyway. But there
are:

Function Description

host to network short
htons()

host to network long
htonl()

network to host short
ntohs()

network to host long
ntohl()

Basically, you’ll want to convert the numbers to Network Byte Order before they go out on the wire, and
convert them to Host Byte Order as they come in off the wire.

I don’t know of a 64-bit variant, sorry. And if you want to do floating point, check out the section on
Serialization, far below.

Assume the numbers in this document are in Host Byte Order unless I say otherwise.

3.3 structs

Well, we’re finally here. It’s time to talk about programming. In this section, I’ll cover various data types
used by the sockets interface, since some of them are a real bear to figure out.

First the easy one: a socket descriptor. A socket descriptor is the following type:

int

Just a regular int.
Things get weird from here, so just read through and bear with me.

My First Struct™—struct addrinfo. This structure is a more recent invention, and is used to prep
the socket address structures for subsequent use. It’s also used in host name lookups, and service name
lookups. That’ll make more sense later when we get to actual usage, but just know for now that it’s one
of the first things you’ll call when making a connection.

3.3. structs 15

struct addrinfo {
int ai_flags; // AI_PASSIVE, AI_CANONNAME, etc.
int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM
int ai_protocol; // use 0 for "any"
size_t ai_addrlen; // size of ai_addr in bytes
struct sockaddr *ai_addr; // struct sockaddr_in or _iné6
char *ai_canonname; // full canonical hostname
struct addrinfo *ai_next; // linked list, next node

1

You’ll load this struct up a bit, and then call getaddrinfo(). It’ll return a pointer to a new linked list of
these structures filled out with all the goodies you need.

You can force it to use IPv4 or IPv6 in the ai_family field, or leave it as AF_UNSPEC to use whatever.
This is cool because your code can be IP version-agnostic.

Note that this is a linked list: ai_next points at the next element—there could be several results for you
to choose from. I’d use the first result that worked, but you might have different business needs; I don’t
know everything, man!

You’ll see that the ai_addr field in the struct addrinfo is a pointer to a struct sockaddr. This is
where we start getting into the nitty-gritty details of what’s inside an IP address structure.

You might not usually need to write to these structures; oftentimes, a call to getaddrinfo() to fill out
your struct addrinfo for you is all you’ll need. You will, however, have to peer inside these structs
to get the values out, so I’'m presenting them here.

(Also, all the code written before struct addrinfo was invented we packed all this stuff by hand, so
you’ll see a lot of IPv4 code out in the wild that does exactly that. You know, in old versions of this guide
and so on.)

Some structs are IPv4, some are IPv6, and some are both. I’ll make notes of which are what.

Anyway, the struct sockaddr holds socket address information for many types of sockets.

struct sockaddr {

unsigned short sa_family; // address family, AF_Xxx

char sa_data[14]; // 14 bytes of protocol address
1

sa_family can be a variety of things, but it’ll be AF_INET (IPv4) or AF_INET6 (IPv6) for everything
we do in this document. sa_data contains a destination address and port number for the socket. This is
rather unwieldy since you don’t want to tediously pack the address in the sa_data by hand.

To deal with struct sockaddr, programmers created a parallel structure: struct sockaddr_in (“in”
for “Internet”) to be used with IPv4.

And this is the important bit: a pointer to a struct sockaddr_in can be cast to a pointer to a
struct sockaddr and vice-versa. So even though connect() wants a struct sockaddr*, you can
still use a struct sockaddr_in and cast it at the last minute!

// (IPv4 only--see struct sockaddr_in6 for IPv6)

struct sockaddr_in {

short int sin_family; // Address family, AF_INET
unsigned short int sin_port; // Port number

struct in_addr sin_addr; // Internet address

unsigned char sin_zero[8]; // Same size as struct sockaddr

};

16 Chapter 3. IP Addresses, structs, and Data Munging

This structure makes it easy to reference elements of the socket address. Note that sin_zero (which
is included to pad the structure to the length of a struct sockaddr) should be set to all zeros with the
function memset (). Also, notice that sin_family correspondsto sa_familyinastruct sockaddr and
should be set to “AF_INET”. Finally, the sin_port must be in Network Byte Order (by using htons()!)

Let’s dig deeper! You see the sin_addr field is a struct in_addr. What is that thing? Well, not to be
overly dramatic, but it’s one of the scariest unions of all time:

// (IPv4 only--see struct in6_addr for IPv6)

// Internet address (a structure for historical reasons)
struct in_addr {

uint32_t s_addr; // that's a 32-bit int (4 bytes)
};

Whoa! Well, it used to be a union, but now those days seem to be gone. Good riddance. So if you have
declared ina to be of type struct sockaddr_in, then ina.sin_addr.s_addr references the 4-byte
IP address (in Network Byte Order). Note that even if your system still uses the God-awful union for
struct in_addr, you can still reference the 4-byte IP address in exactly the same way as I did above
(this due to #defines).

What about IPv6? Similar structs exist for it, as well:

// (IPv6 only--see struct sockaddr_in and struct in_addr for IPv4)

struct sockaddr_in6 {

u_int16_t sin6_family; // address family, AF_INET6
u_inti6_t sin6_port; // port, Network Byte Order
u_int32_t sin6_flowinfo; // IPv6 flow information
struct in6_addr sin6_addr; // IPv6 address

u_int32_t sin6_scope_id; // Scope ID

};

struct in6_addr {
unsigned char s6_addr[16]; // IPv6 address
};

Note that IPv6 has an IPv6 address and a port number, just like IPv4 has an IPv4 address and a port
number.

Also note that I’'m not going to talk about the IPv6 flow information or Scope ID fields for the moment...
this is just a starter guide. : -)

Last but not least, here is another simple structure, struct sockaddr_storage that is designed to be
large enough to hold both IPv4 and IPv6 structures. See, for some calls, sometimes you don’t know in
advance if it’s going to fill out your struct sockaddr with an IPv4 or IPv6 address. So you pass in this
parallel structure, very similar to struct sockaddr except larger, and then cast it to the type you need:

struct sockaddr_storage {
sa_family_t ss_family; // address family

// all this is padding, implementation specific, ignore 1it:

char __ss_padl[_SS_PAD1SIZE];
int64_t __ss_align;
char __Ss_pad2[_SS_PAD2SIZE];

Y

What’s important is that you can see the address family in the ss_family field—check this to see
if it’s AF_INET or AF_INET6 (for IPv4 or IPv6). Then you can cast it to a struct sockaddr_in or

3.4. IP Addresses, Part Deux 17

struct sockaddr_in6 if you wanna.

3.4 IP Addresses, Part Deux

Fortunately for you, there are a bunch of functions that allow you to manipulate IP addresses. No need to
figure them out by hand and stuff them in a long with the << operator.

First, let’s say you have a struct sockaddr_in ina, and you have an IP address “10.12.110.57” or
“2001:db8:63b3:1: :3490” that you want to store into it. The function you want to use, inet_pton(),
converts an IP address in numbers-and-dots notation into either a struct in_addr orastruct in6_addr
depending on whether you specify AF_INET or AF_INET6. (“pton” stands for “presentation to network”—
you can call it “printable to network” if that’s easier to remember.) The conversion can be made as follows
for IPv4 and IPv6:

struct sockaddr_in sa; // IPv4
struct sockaddr_in6é sa6; // IPv6

inet_pton(AF_INET, "10.12.110.57", &(sa.sin_addr));
inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

(Quick note: the old way of doing things used a function called inet_addr () or another function called
inet_aton(); these are now obsolete and don’t work with IPv6.)

Now, the above code snippet isn’t very robust because there is no error checking. See, inet_pton()
returns -1 on error, or 0 if the address is messed up. So check to make sure the result is greater than 0
before using!

All right, now you can convert string IP addresses to their binary representations. What about the other
way around? What if you have a struct in_addr and you want to print it in numbers-and-dots notation?
(Or a struct in6_addr that you want in, uh, “hex-and-colons” notation.) In this case, you’ll want to
use the function inet_ntop() (“ntop” means “network to presentation”—you can call it “network to
printable” if that’s easier to remember), like this:

// IPv4:

char ip4[INET_ADDRSTRLEN]; // space to hold the IPv4 string
struct sockaddr_in sa; // pretend this is loaded with something

inet_ntop(AF_INET, &(sa.sin_addr), ip4, INET_ADDRSTRLEN);

printf("The IPv4 address is: %s\n", ip4);

// IPv6:

char ip6[INET6_ADDRSTRLEN]; // space to hold the IPv6 string
struct sockaddr_in6 sa6; // pretend this is loaded with something

inet_ntop(AF_INET6, &(sa6.sin6_addr), ip6, INET6_ADDRSTRLEN);

printf("The address is: %s\n", ip6);

When you call it, you’ll pass the address type (IPv4 or IPv6), the address, a pointer to a string to hold the
result, and the maximum length of that string. (Two macros conveniently hold the size of the string you’ll
need to hold the largest IPv4 or IPv6 address: INET_ADDRSTRLEN and INET6_ADDRSTRLEN.)

(Another quick note to mention once again the old way of doing things: the historical function to do this
conversion was called inet_ntoa(). It’s also obsolete and won’t work with IPv6.)

18 Chapter 3. IP Addresses, structs, and Data Munging

Lastly, these functions only work with numeric IP addresses—they won’t do any nameserver DNS lookup
on a hostname, like “www . example.com”. You will use getaddrinfo() to do that, as you’ll see later on.

3.4.1 Private (Or Disconnected) Networks

Lots of places have a firewall that hides the network from the rest of the world for their own protection.
And often times, the firewall translates “internal” IP addresses to “external” (that everyone else in the
world knows) IP addresses using a process called Network Address Translation, or NAT.

Are you getting nervous yet? “Where’s he going with all this weird stuff?”

Well, relax and buy yourself a non-alcoholic (or alcoholic) drink, because as a beginner, you don’t even
have to worry about NAT, since it’s done for you transparently. But I wanted to talk about the network
behind the firewall in case you started getting confused by the network numbers you were seeing.

For instance, I have a firewall at home. I have two static IPv4 addresses allocated to me by the DSL
company, and yet I have seven computers on the network. How is this possible? Two computers can’t
share the same IP address, or else the data wouldn’t know which one to go to!

The answer is: they don’t share the same IP addresses. They are on a private network with 24 million
IP addresses allocated to it. They are all just for me. Well, all for me as far as anyone else is concerned.
Here’s what’s happening:

If I log into a remote computer, it tells me I'm logged in from 192.0.2.33 which is the public IP address
my ISP has provided to me. But if I ask my local computer what its IP address is, it says 10.0.0.5. Who
is translating the IP address from one to the other? That’s right, the firewall! It’s doing NAT!

10.x.x.Xx is one of a few reserved networks that are only to be used either on fully disconnected networks,
or on networks that are behind firewalls. The details of which private network numbers are available for
you to use are outlined in RFC 1918°, but some common ones you’ll see are 10.x.x.x and 192.168.x.X,
where x is 0-255, generally. Less common is 172.y.X.X, where y goes between 16 and 31.

Networks behind a NATing firewall don’t need to be on one of these reserved networks, but they commonly
are.

(Fun fact! My external IP address isn’t really 192.0.2.33. The 192.0.2.x network is reserved for
make-believe “real” IP addresses to be used in documentation, just like this guide! Wowzers!)

IPv6 has private networks, too, in a sense. They’ll start with fdXX: (or maybe in the future fcXX:), as per
RFC 41937. NAT and IPv6 don’t generally mix, however (unless you’re doing the IPv6 to IPv4 gateway
thing which is beyond the scope of this document)—in theory you’ll have so many addresses at your
disposal that you won’t need to use NAT any longer. But if you want to allocate addresses for yourself on
a network that won’t route outside, this is how to do it.

Shttps://tools.ietf.org/html/rfc1918
7https://tools.ietf.org/html/rfc4193

https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc4193

Chapter 4

Jumping from IPv4 to IPv6

But I just want to know what to change in my code to get it going with IPv6! Tell me now!

Ok! Ok!

Almost everything in here is something I’ve gone over, above, but it’s the short version for the impatient.
(Of course, there is more than this, but this is what applies to the guide.)

1.

11.

12.

First of all, try to use getaddrinfo() to get all the struct sockaddr info, instead of packing
the structures by hand. This will keep you IP version-agnostic, and will eliminate many of the
subsequent steps.

. Any place that you find you’re hard-coding anything related to the IP version, try to wrap up in a

helper function.

. Change AF_INET to AF_INET6.
. Change PF_INET to PF_INET®.

. Change INADDR_ANY assignments to in6addr_any assignments, which are slightly different:

struct sockaddr_in sa;
struct sockaddr_in6é sa6;

sa.sin_addr.s_addr = INADDR_ANY; // use my IPv4 address
sa6.sin6_addr = in6addr_any; // use my IPv6 address

Also, the value INGADDR_ANY_INIT can be used as an initializer when the struct in6_addr is
declared, like so:

struct in6_addr ia6 = INGADDR_ANY_INIT;

. Instead of struct sockaddr_in use struct sockaddr_in6, being sure to add “6” to the fields

as appropriate (see structs, above). There is no sin6_zero field.

. Instead of struct in_addr use struct in6_addr, being sure to add “6” to the fields as appropri-

ate (see structs, above).

. Instead of inet_aton() or inet_addr (), use inet_pton().
. Instead of inet_ntoa(), use inet_ntop().

10.

Instead of gethostbyname (), use the superior getaddrinfo().

Instead of gethostbyaddr (), use the superior getnameinfo() (although gethostbyaddr () can
still work with IPv6).

INADDR_BROADCAST no longer works. Use IPv6 multicast instead.

19

20 Chapter 4. Jumping from IPv4 to IPv6

Et voila!

Chapter 5

System Calls or Bust

This is the section where we get into the system calls (and other library calls) that allow you to access
the network functionality of a Unix box, or any box that supports the sockets API for that matter (BSD,
Windows, Linux, Mac, what-have-you.) When you call one of these functions, the kernel takes over and
does all the work for you automagically.

The place most people get stuck around here is what order to call these things in. In that, the man pages
are no use, as you’ve probably discovered. Well, to help with that dreadful situation, I’ve tried to lay out
the system calls in the following sections in exactly (approximately) the same order that you’ll need to
call them in your programs.

That, coupled with a few pieces of sample code here and there, some milk and cookies (which I fear you
will have to supply yourself), and some raw guts and courage, and you’ll be beaming data around the
Internet like the Son of Jon Postel!

(Please note that for brevity, many code snippets below do not include necessary error checking. And they
very commonly assume that the result from calls to getaddrinfo() succeed and return a valid entry in
the linked list. Both of these situations are properly addressed in the stand-alone programs, though, so
use those as a model.)

5.1 getaddrinfo()—Prepare to launch!

This is a real workhorse of a function with a lot of options, but usage is actually pretty simple. It helps set
up the structs you need later on.

A tiny bit of history: it used to be that you would use a function called gethostbyname() to do DNS
lookups. Then you’d load that information by hand into a struct sockaddr_in, and use that in your
calls.

This is no longer necessary, thankfully. (Nor is it desirable, if you want to write code that works for both
IPv4 and IPv6!) In these modern times, you now have the function getaddrinfo() that does all kinds of
good stuff for you, including DNS and service name lookups, and fills out the structs you need, besides!

Let’s take a look!

#include <sys/types.h>
#inc lude <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, // e.g. "www.example.com" or IP
const char *service, // e.g. "http" or port number
const struct addrinfo *hints,
struct addrinfo **res);

You give this function three input parameters, and it gives you a pointer to a linked-list, res, of results.

21

22 Chapter 5. System Calls or Bust

The node parameter is the host name to connect to, or an IP address.

Next is the parameter service, which can be a port number, like “80”, or the name of a particular service
(found in The IANA Port List! or the /etc/services file on your Unix machine) like “http” or “ftp” or

“telnet” or “smtp” or whatever.

Finally, the hints parameter points to a struct addrinfo that you’ve already filled out with relevant
information.

Here’s a sample call if you’re a server who wants to listen on your host’s IP address, port 3490. Note that
this doesn’t actually do any listening or network setup; it merely sets up structures we’ll use later:

int status;
struct addrinfo hints;
struct addrinfo *servinfo; // will point to the results

memset (&hints, 0, sizeof hints); // make sure the struct is empty

hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPv6
hints.ai_socktype = SOCK_STREAM; // TCP stream sockets
hints.ai_flags = AI_PASSIVE; // fill in my IP for me

if ((status = getaddrinfo(NULL, "3490", &hints, &servinfo)) != 0) {
fprintf(stderr, "gai error: %s\n", gai_strerror(status));
exit(1);

// servinfo now points to a linked list of 1 or more
// struct addrinfos
// ... do everything until you don't need servinfo anymore

freeaddrinfo(servinfo); // free the linked-list

Notice that I set the ai_family to AF_UNSPEC, thereby saying that I don’t care if we use IPv4 or IPv6.
You can set it to AF_INET or AF_INET6 if you want one or the other specifically.

Also, you’ll see the AT_PASSIVE flag in there; this tells getaddrinfo() to assign the address of my local
host to the socket structures. This is nice because then you don’t have to hardcode it. (Or you can put a
specific address in as the first parameter to getaddrinfo() where I currently have NULL, up there.)

Then we make the call. If there’s an error (getaddrinfo() returns non-zero), we can print it out using
the function gai_strerror(), as you see. If everything works properly, though, servinfo will point
to a linked list of struct addrinfos, each of which contains a struct sockaddr of some kind that we
can use later! Nifty!

Finally, when we’re eventually all done with the linked list that getaddrinfo() so graciously allocated
for us, we can (and should) free it all up with a call to freeaddrinfo().

Here’s a sample call if you’re a client who wants to connect to a particular server, say “www.example.net”
port 3490. Again, this doesn’t actually connect, but it sets up the structures we’ll use later:

int status;
struct addrinfo hints;
struct addrinfo *servinfo; // will point to the results

memset (&hints, 0, sizeof hints); // make sure the struct is empty
hints.ai family = AF_UNSPEC; // don't care IPv4 or IPv6
hints.ai_socktype = SOCK_STREAM; // TCP stream sockets

https://www.iana.org/assignments/port-numbers

https://www.iana.org/assignments/port-numbers

40

41

42

43

5.1. getaddrinfo()—Prepare to launch! 23

// get ready to connect
status = getaddrinfo("www.example.net'", "3490", &hints, é&servinfo);

// servinfo now points to a linked list of 1 or more
// struct addrinfos

// etc.

J

I keep saying that servinfo is a linked list with all kinds of address information. Let’s write a quick
demo program to show off this information. This short program? will print the IP addresses for whatever
host you specify on the command line:

/*

** showip.c

* *

** show IP addresses for a host given on the command line
*/

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <netinet/in.h>

int main(int argc, char *argv[])

{
struct addrinfo hints, *res, *p;
int status;
char ipstr[INET6_ADDRSTRLEN];

if (argc !'= 2) {
fprintf(stderr,"usage: showip hostname\n");
return 1;

memset (&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; // Either IPv4 or IPv6
hints.ai_socktype = SOCK_STREAM;

if ((status = getaddrinfo(argv[1], NULL, &hints, &res)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(status));
return 2;

printf("IP addresses for %s:\n\n", argv[1]);

for(p = res;p !'= NULL; p = p->ai_next) {
void *addr;
char *ipver;
struct sockaddr_in *ipv4;
struct sockaddr_in6 *ipv6;

// get the pointer to the address itself,

Zhttps://beej.us/guide/bgnet/source/examples/showip.c

https://beej.us/guide/bgnet/source/examples/showip.c

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

24 Chapter 5. System Calls or Bust

// different fields in IPv4 and IPv6:

if (p-»ai_family == AF_INET) { // IPv4
ipv4 = (struct sockaddr_in *)p->ai_addr;
addr = &(ipv4->sin_addr);
ipver = "IPv4'";

} else { // IPv6
ipv6é = (struct sockaddr_in6 *)p->ai_addr;
addr = &(ipv6->sin6_addr);
ipver = "IPv6";

// convert the IP to a string and print 1it:
inet_ntop(p->ai_family, addr, ipstr, sizeof ipstr);
printf(" %s: %s\n", ipver, ipstr);

freeaddrinfo(res); // free the linked list

return 0;

As you see, the code calls getaddrinfo() on whatever you pass on the command line, that fills out the
linked list pointed to by res, and then we can iterate over the list and print stuff out or do whatever.

(There’s a little bit of ugliness there where we have to dig into the different types of struct sockaddrs
depending on the IP version. Sorry about that! I’m not sure of a better way around it.)

Sample run! Everyone loves screenshots:

$ showip www.example.net
IP addresses for www.example.net:

IPv4: 192.0.2.88

$ showip ipv6.example.com
IP addresses for ipv6.example.com:

IPv4: 192.0.2.101
IPv6: 2001:db8:8c00:22::171

Now that we have that under control, we’ll use the results we get from getaddrinfo() to pass to other
socket functions and, at long last, get our network connection established! Keep reading!

5.2 socket()—Get the File Descriptor!

I guess I can put it off no longer—I have to talk about the socket () system call. Here’s the breakdown:

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

But what are these arguments? They allow you to say what kind of socket you want (IPv4 or IPv6, stream
or datagram, and TCP or UDP).

It used to be people would hardcode these values, and you can absolutely still do that. (domain is PF_INET
or PF_INETS6, type is SOCK_STREAM or SOCK_DGRAM, and protocol can be set to 0 to choose the proper

5.3. bind()—What port am I on? 25

]

protocol for the given type. Or you can call getprotobyname () to look up the protocol you want, “tcp’
or “udp”.)

(This PF_INET thing is a close relative of the AF_INET that you can use when initializing the sin_family
field in your struct sockaddr_in. In fact, they’re so closely related that they actually have the same
value, and many programmers will call socket() and pass AF_INET as the first argument instead of
PF_INET. Now, get some milk and cookies, because it’s time for a story. Once upon a time, a long time
ago, it was thought that maybe an address family (what the “AF” in “AF_INET” stands for) might support
several protocols that were referred to by their protocol family (what the “PF” in “PF_INET” stands for).
That didn’t happen. And they all lived happily ever after, The End. So the most correct thing to do is to
use AF_INET in your struct sockaddr_in and PF_INET in your call to socket().)

Anyway, enough of that. What you really want to do is use the values from the results of the call to
getaddrinfo(), and feed them into socket () directly like this:

int s;
struct addrinfo hints, *res;

// do the lookup
// [pretend we already filled out the "hints" struct]
getaddrinfo("www.example.com", "http", &hints, &res);

// again, you should do error-checking on getaddrinfo(), and walk

// the "res" linked list looking for valid entries instead of just
// assuming the first one is good (like many of these examples do).
// See the section on client/server for real examples.

s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

socket () simply returns to you a socket descriptor that you can use in later system calls, or -1 on error.
The global variable errno is set to the error’s value (see the errno man page for more details, and a quick
note on using errno in multithreaded programs).

Fine, fine, fine, but what good is this socket? The answer is that it’s really no good by itself, and you need
to read on and make more system calls for it to make any sense.

5.3 bind()—What port am I on?

Once you have a socket, you might have to associate that socket with a port on your local machine. (This
is commonly done if you’re going to listen() for incoming connections on a specific port—multiplayer
network games do this when they tell you to “connect to 192.168.5.10 port 3490”.) The port number is
used by the kernel to match an incoming packet to a certain process’s socket descriptor. If you’re going to
only be doing a connect () (because you’re the client, not the server), this is probably unnecessary. Read
it anyway, just for kicks.

Here is the synopsis for the bind() system call:

#include <sys/types.h>
#inc lude <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

sockfd is the socket file descriptor returned by socket (). my_addr is a pointer to a struct sockaddr
that contains information about your address, namely, port and IP address. addr len is the length in bytes
of that address.

Whew. That’s a bit to absorb in one chunk. Let’s have an example that binds the socket to the host the
program is running on, port 3490:

26 Chapter 5. System Calls or Bust

struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset (&hints, ©, sizeof hints);

hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE; // fill in my IP for me
getaddrinfo(NULL, "3490", &hints, &res);

// make a socket:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai protocol);

// bind it to the port we passed in to getaddrinfo():

bind(sockfd, res->ai_addr, res->ai_addrlen);

By using the AI_PASSIVE flag, I'm telling the program to bind to the IP of the host it’s running on. If
you want to bind to a specific local IP address, drop the AI_PASSIVE and put an IP address in for the first
argument to getaddrinfo().

bind() also returns -1 on error and sets errno to the error’s value.

Lots of old code manually packs the struct sockaddr_in before calling bind(). Obviously this is
IPv4-specific, but there’s really nothing stopping you from doing the same thing with IPv6, except that
using getaddrinfo() is going to be easier, generally. Anyway, the old code looks something like this:

// I'l'l THIS IS THE OLD WAY !!!

int sockfd;
struct sockaddr_in my_addr;

sockfd = socket(PF_INET, SOCK_STREAM, 0);
my_addr.sin_family = AF_INET;

my_addr.sin_port = htons(MYPORT); // short, network byte order
my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");

memset (my_addr.sin_zero, '\0', sizeof my_addr.sin_zero);

bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr);

J

In the above code, you could also assign INADDR_ANY to the s_addr field if you wanted to bind to your
local IP address (like the AI_PASSIVE flag, above). The IPv6 version of INADDR_ANY is a global variable
in6addr_any that is assigned into the sin6_addr field of your struct sockaddr_in6. (There is also
a macro IN6ADDR_ANY_INIT that you can use in a variable initializer.)

Another thing to watch out for when calling bind(): don’t go underboard with your port numbers. All
ports below 1024 are RESERVED (unless you’re the superuser)! You can have any port number above
that, right up to 65535 (provided they aren’t already being used by another program).

Sometimes, you might notice, you try to rerun a server and bind() fails, claiming “Address already in
use.” What does that mean? Well, a little bit of a socket that was connected is still hanging around in the
kernel, and it’s hogging the port. You can either wait for it to clear (a minute or so), or add code to your
program allowing it to reuse the port, like this:

5.4. connect()—Hey, you! 27

int yes=1;
//char yes='1"'; // Solaris people use this

// lose the pesky "Address already in use'" error message
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof yes);

One small extra final note about bind(): there are times when you won’t absolutely have to call it. If
you are connect ()ing to a remote machine and you don’t care what your local port is (as is the case with
telnet where you only care about the remote port), you can simply call connect (), it’ll check to see if
the socket is unbound, and will bind() it to an unused local port if necessary.

5.4 connect()—Hey, you!

Let’s just pretend for a few minutes that you’re a telnet application. Your user commands you (just like
in the movie TRON) to get a socket file descriptor. You comply and call socket (). Next, the user tells
you to connect to “10.12.110.57” on port “23” (the standard telnet port). Yow! What do you do now?

Lucky for you, program, you’re now perusing the section on connect ()—how to connect to a remote
host. So read furiously onward! No time to lose!

The connect () call is as follows:

#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

sockfd is our friendly neighborhood socket file descriptor, as returned by the socket () call, serv_addr
isa struct sockaddr containing the destination port and IP address, and addr Len is the length in bytes
of the server address structure.

All of this information can be gleaned from the results of the getaddrinfo() call, which rocks.

Is this starting to make more sense? I can’t hear you from here, so I’ll just have to hope that it is. Let’s
have an example where we make a socket connection to “www.example.com”, port 3490:

struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset (&hints, 0, sizeof hints);

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

getaddrinfo("www.example.com", "3490", &hints, &res);

// make a socket:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

// connect!

connect(sockfd, res->ai_addr, res->ai_addrlen);

Again, old-school programs filled out their own struct sockaddr_ins to pass to connect (). You can
do that if you want to. See the similar note in the bind() section, above.

Be sure to check the return value from connect ()—it’ll return -1 on error and set the variable errno.

28 Chapter 5. System Calls or Bust

Also, notice that we didn’t call bind(). Basically, we don’t care about our local port number; we only
care where we’re going (the remote port). The kernel will choose a local port for us, and the site we
connect to will automatically get this information from us. No worries.

5.5 Tlisten()—Will somebody please call me?

OK, time for a change of pace. What if you don’t want to connect to a remote host. Say, just for kicks,
that you want to wait for incoming connections and handle them in some way. The process is two step:
first you listen(), then you accept () (see below).

The listen() call is fairly simple, but requires a bit of explanation:

int listen(int sockfd, int backlog);

sockfd is the usual socket file descriptor from the socket() system call. backlog is the number of
connections allowed on the incoming queue. What does that mean? Well, incoming connections are
going to wait in this queue until you accept () them (see below) and this is the limit on how many can
queue up. Most systems silently limit this number to about 20; you can probably get away with setting it
to 5 or 10.

Again, as per usual, listen() returns -1 and sets errno on error.

Well, as you can probably imagine, we need to call bind() before we call listen() so that the server
is running on a specific port. (You have to be able to tell your buddies which port to connect to!) So if
you’re going to be listening for incoming connections, the sequence of system calls you’ll make is:

getaddrinfo();

socket();

bind();

listen();

/* accept() goes here */

I’ll just leave that in the place of sample code, since it’s fairly self-explanatory. (The code in the accept ()
section, below, is more complete.) The really tricky part of this whole sha-bang is the call to accept().

5.6 accept()—*“Thank you for calling port 3490.”

Get ready—the accept () call is kinda weird! What’s going to happen is this: someone far far away will
try to connect () to your machine on a port that you are listen()ing on. Their connection will be queued
up waiting to be accept () ed. You call accept () and you tell it to get the pending connection. It’ll return
to you a brand new socket file descriptor to use for this single connection! That’s right, suddenly you have
two socket file descriptors for the price of one! The original one is still listening for more new connections,
and the newly created one is finally ready to send() and recv(). We’re there!

The call is as follows:

#inc lude <sys/types.h>
#inc lude <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

sockfd is the listen()ing socket descriptor. Easy enough. addr will usually be a pointer to a local
struct sockaddr_storage. This is where the information about the incoming connection will go (and
with it you can determine which host is calling you from which port). addr len is a local integer variable
that should be set to sizeof(struct sockaddr_storage) before its address is passed to accept ().
accept () will not put more than that many bytes into addr. If it puts fewer in, it’ll change the value of
addr len to reflect that.

40

41

42

43

5.7. send() and recv()—Talk to me, baby!

Guess what? accept () returns -1 and sets errno if an error occurs. Betcha didn’t figure that.

29

Like before, this is a bunch to absorb in one chunk, so here’s a sample code fragment for your perusal:

{

#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#inc lude <netdb.h>

#define MYPORT "3490" // the port users will be connecting to
#define BACKLOG 10 // how many pending connections queue holds

int main(void)

struct sockaddr_storage their_addr;
socklen_t addr_size;

struct addrinfo hints, *res;

int sockfd, new_fd;

// Il don't forget your error checking for these calls !!

// first, load up address structs with getaddrinfo():

memset (&hints, 0, sizeof hints);

hints.ai_ family = AF_UNSPEC; // use IPv4 or IPv6, whichever

hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE; // fill in my IP for me

getaddrinfo(NULL, MYPORT, &hints, &res);

// make a socket, bind it, and listen on 1it:

sockfd = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

bind(sockfd, res->ai_addr, res->ai_addrlen);

listen(sockfd, BACKLOG);

// now accept an incoming connection:

addr_size = sizeof their_addr;

new_fd = accept(sockfd, (struct sockaddr *)&their_addr,

&addr_size);

// ready to communicate on socket descriptor new_fd!

Again, note that we will use the socket descriptor new_fd for all send() and recv() calls. If you’re
only getting one single connection ever, you can close() the listening sockfd in order to prevent more
incoming connections on the same port, if you so desire.

5.7 send() and recv()—Talk to me, baby!

These two functions are for communicating over stream sockets or connected datagram sockets. If you
want to use regular unconnected datagram sockets, you’ll need to see the section on sendto() and
recvfrom(), below.

30 Chapter 5. System Calls or Bust

Here’s something that might (or might not) be new to you: these are blocking calls. That is, recv ()
will block until there is some data ready to receive. “But what does ‘block’ mean, already?!” It
means your program is going to stop there, on that system call, until someone sends you something.
(The OS techie jargon for “stop” in that sentence is actually sleep, so I might use those terms
interchangeably.) send() can also block if the stuff you’re sending is all jammed up somehow,
but that’s rarer. We’ll revisit this concept later, and talk about how to avoid it when you need to.

Here’s the send() call:

int send(int sockfd, const void *msg, int len, int flags);

sockfd is the socket descriptor you want to send data to (whether it’s the one returned by socket () or
the one you got with accept()). msg is a pointer to the data you want to send, and len is the length of
that data in bytes. Just set flags to 0. (See the send () man page for more information concerning flags.)

Some sample code might be:

char *msg = "Beej was here!";
int len, bytes_sent;

len = strlen(msg);
bytes_sent = send(sockfd, msg, len, 0);

send () returns the number of bytes actually sent out—this might be less than the number you told it to
send! See, sometimes you tell it to send a whole gob of data and it just can’t handle it. It’ll fire off as
much of the data as it can, and trust you to send the rest later. Remember, if the value returned by send ()
doesn’t match the value in 1len, it’s up to you to send the rest of the string. The good news is this: if the
packet is small (less than 1K or so) it will probably manage to send the whole thing all in one go. Again,
-1 is returned on error, and errno is set to the error number.

The recv() call is similar in many respects:

int recv(int sockfd, void *buf, int len, int flags);

sockfd is the socket descriptor to read from, buf is the buffer to read the information into, len is the
maximum length of the buffer, and flags can again be set to 0. (See the recv() man page for flag
information.)

recv () returns the number of bytes actually read into the buffer, or -1 on error (with errno set, accord-
ingly).

Wait! recv() canreturn 0. This can mean only one thing: the remote side has closed the connection on
you! A return value of 0 is recv()’s way of letting you know this has occurred.

There, that was easy, wasn’t it? You can now pass data back and forth on stream sockets! Whee! You’re
a Unix Network Programmer!

5.8 sendto() and recvfrom()—Talk to me, DGRAM-style

“This is all fine and dandy,” I hear you saying, “but where does this leave me with unconnected datagram
sockets?” No problemo, amigo. We have just the thing.

Since datagram sockets aren’t connected to a remote host, guess which piece of information we need to
give before we send a packet? That’s right! The destination address! Here’s the scoop:

5.9. close() and shutdown()—Get outta my face! 31

int sendto(int sockfd, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, socklen_t tolen);

As you can see, this call is basically the same as the call to send() with the addition of two other
pieces of information. to is a pointer to a struct sockaddr (which will probably be another
struct sockaddr_in or struct sockaddr_in6 or struct sockaddr_storage that you cast at the
last minute) which contains the destination IP address and port. tolen, an int deep-down, can simply
be set to sizeof *to or sizeof (struct sockaddr_storage).

To get your hands on the destination address structure, you’ll probably either get it from getaddrinfo(),
or from recvfrom(), below, or you’ll fill it out by hand.

Just like with send(), sendto() returns the number of bytes actually sent (which, again, might be less
than the number of bytes you told it to send!), or -1 on error.

Equally similar are recv() and recvfrom(). The synopsis of recvfrom() is:

int recvfrom(int sockfd, void *buf, int len, unsigned int flags,
struct sockaddr *from, int *fromlen);

Again, this is just like recv() with the addition of a couple fields. from is a pointer to a lo-
cal struct sockaddr_storage that will be filled with the IP address and port of the originat-
ing machine. fromlen is a pointer to a local int that should be initialized to sizeof *from or
sizeof(struct sockaddr_storage). When the function returns, fromlen will contain the length of
the address actually stored in from.

recvfrom() returns the number of bytes received, or -1 on error (with errno set accordingly).

So, here’s a question: why do we use struct sockaddr_storage as the socket type? Why not
struct sockaddr_in? Because, you see, we want to not tie ourselves down to IPv4 or IPv6. So we use
the generic struct sockaddr_storage which we know will be big enough for either.

(So... here’s another question: why isn’t struct sockaddr itself big enough for any address? We even
cast the general-purpose struct sockaddr_storage to the general-purpose struct sockaddr! Seems
extraneous and redundant, huh? The answer is, it just isn’t big enough, and I’d guess that changing it at
this point would be Problematic. So they made a new one.)

Remember, if you connect () a datagram socket, you can then simply use send() and recv() for all
your transactions. The socket itself is still a datagram socket and the packets still use UDP, but the socket
interface will automatically add the destination and source information for you.

5.9 close() and shutdown()—Get outta my face!

Whew! You’ve been send()ing and recv ()ing data all day long, and you’ve had it. You’re ready to close
the connection on your socket descriptor. This is easy. You can just use the regular Unix file descriptor
close() function:

close(sockfd);

This will prevent any more reads and writes to the socket. Anyone attempting to read or write the socket
on the remote end will receive an error.

Just in case you want a little more control over how the socket closes, you can use the shutdown ()
function. It allows you to cut off communication in a certain direction, or both ways (just like close()
does). Synopsis:

int shutdown(int sockfd, int how);

sockfd is the socket file descriptor you want to shutdown, and how is one of the following:

32 Chapter 5. System Calls or Bust

how Effect

0 Further receives are disallowed
Further sends are disallowed
2 Further sends and receives are disallowed (like close())

[N

shutdown () returns @ on success, and -1 on error (with errno set accordingly).

If you deign to use shutdown() on unconnected datagram sockets, it will simply make the socket un-
available for further send() and recv() calls (remember that you can use these if you connect () your
datagram socket).

It’s important to note that shutdown () doesn’t actually close the file descriptor—it just changes its us-
ability. To free a socket descriptor, you need to use close().

Nothing to it.

(Except to remember that if you’re using Windows and Winsock that you should call closesocket()
instead of close().)

5.10 getpeername()—Who are you?

This function is so easy.
It’s so easy, I almost didn’t give it its own section. But here it is anyway.

The function getpeername() will tell you who is at the other end of a connected stream socket. The
Synopsis:

#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *addr, int *addrlen);

sockfd is the descriptor of the connected stream socket, addr is a pointer to a struct sockaddr (or a
struct sockaddr_in) that will hold the information about the other side of the connection, and addr len
is a pointer to an int, that should be initialized to sizeof *addr or sizeof (struct sockaddr).

The function returns -1 on error and sets errno accordingly.

Once you have their address, you can use inet_ntop(), getnameinfo(), or gethostbyaddr () to print
or get more information. No, you can’t get their login name. (Ok, ok. If the other computer is running
an ident daemon, this is possible. This, however, is beyond the scope of this document. Check out RFC
1413? for more info.)

5.11 gethostname()—Who am I?

Even easier than getpeername() is the function gethostname(). It returns the name of the computer
that your program is running on. The name can then be used by getaddrinfo(), above, to determine the
IP address of your local machine.

What could be more fun? I could think of a few things, but they don’t pertain to socket programming.
Anyway, here’s the breakdown:

#include <unistd.h>

int gethostname(char *hostname, size t size);

The arguments are simple: hostname is a pointer to an array of chars that will contain the hostname upon
the function’s return, and size is the length in bytes of the hostname array.

3https://tools.ietf.org/html/rfc1413

https://tools.ietf.org/html/rfc1413
https://tools.ietf.org/html/rfc1413

5.11. gethostname()—Who am I?

The function returns @ on successful completion, and -1 on error, setting errno as usual.

33

34

Chapter 5. System Calls or Bust

Chapter 6

Client-Server Background

It’s a client-server world, baby. Just about everything on the network deals with client processes talking to
server processes and vice-versa. Take telnet, for instance. When you connect to a remote host on port
23 with telnet (the client), a program on that host (called telnetd, the server) springs to life. It handles
the incoming telnet connection, sets you up with a login prompt, etc.

Client | ~ % = |Server

send ()

Figure 6.1: Client-Server Interaction.

The exchange of information between client and server is summarized in the above diagram.

Note that the client-server pair can speak SOCK_STREAM, SOCK_DGRAM, or anything else (as long as they’re
speaking the same thing). Some good examples of client-server pairs are telnet/telnetd, ftp/ftpd, or
Firefox/Apache. Every time you use ftp, there’s a remote program, ftpd, that serves you.

Often, there will only be one server on a machine, and that server will handle multiple clients using fork ().
The basic routine is: server will wait for a connection, accept () it, and fork () a child process to handle
it. This is what our sample server does in the next section.

6.1 A Simple Stream Server

All this server does is send the string “Hello, world!” out over a stream connection. All you need to do
to test this server is run it in one window, and telnet to it from another with:

$ telnet remotehostname 3490

where remotehostname is the name of the machine you’re running it on.

The server code’:

Thttps://beej.us/guide/bgnet/source/examples/server.c

35

https://beej.us/guide/bgnet/source/examples/server.c

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

36 Chapter 6. Client-Server Background

/*
** server.c -- a stream socket server demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <signal.h>

#define PORT "3490" // the port users will be connecting to
#define BACKLOG 10 // how many pending connections queue will hold

void sigchld_handler(int s)

‘ (void)s; // quiet unused variable warning
// waitpid() might overwrite errno, so we save and restore it:
int saved_errno = errno;
while(waitpid(-1, NULL, WNOHANG) > 0);
errno = saved_errno;
}

// get sockaddr, IPv4 or IPv6:
void *get_in_addr(struct sockaddr *sa)

{
if (sa->sa_family == AF_INET) {
return &(((struct sockaddr_in*)sa)->sin_addr);
}
return &(((struct sockaddr_in6*)sa)->sin6_addr);
}

int main(void)

// listen on sock_fd, new connection on new_fd

int sockfd, new_fd;

struct addrinfo hints, *servinfo, *p;

struct sockaddr_storage their_addr; // connector's address info
socklen_t sin_size;

struct sigaction sa;

int yes=1;

char s[INET6_ADDRSTRLEN];

int rv;

memset(&hints, 0, sizeof hints);

60

61

62

63

65

66

67

68

69

70

71

72

75

76

77

78

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

6.1. A Simple Stream Server

hints.ai family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE; // use my IP

if ((rv = getaddrinfo(NULL, PORT, &hints, &servinfo)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
return 1;

// loop through all the results and bind to the first we can
for(p = servinfo; p != NULL; p = p->ai_next) {
if ((sockfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) == -1) {
perror("server: socket");
continue;
}
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes,
sizeof(int)) == -1) {
perror("setsockopt");
exit(1);
}
if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
close(sockfd);
perror("server: bind");
continue;
}
break;

freeaddrinfo(servinfo); // all done with this structure

if (p == NULL) {
fprintf(stderr, "server: failed to bind\n");

exit(1);

}

if (listen(sockfd, BACKLOG) == -1) {
perror("listen");
exit(1);

}

sa.sa_handler = sigchld_handler; // reap all dead processes
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;

if (sigaction(SIGCHLD, &sa, NULL) == -1) {
perror('"sigaction");
exit(1);

}

printf("server: waiting for connections...\n");

while(1) { // main accept() loop
sin_size = sizeof their_addr;
new_fd = accept(sockfd, (struct sockaddr *)&their_addr,

37

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

38 Chapter 6. Client-Server Background

&sin_size);

if (new_fd == -1) {
perror("accept");
continue;

}

inet_ntop(their_addr.ss_family,
get_in_addr((struct sockaddr *)&their_addr),
s, sizeof s);

printf("server: got connection from %s\n", s);

if (!fork()) { // this is the child process
close(sockfd); // child doesn't need the listener
if (send(new_fd, "Hello, world!", 13, @) == -1)
perror("send");
close(new_fd);

exit(0);
}
close(new_fd); // parent doesn't need this
}
return 0O;

In case you’re curious, I have the code in one big main() function for (I feel) syntactic clarity. Feel free
to split it into smaller functions if it makes you feel better.

(Also, this whole sigaction() thing might be new to you—that’s OK. The code that’s there is responsible
for reaping zombie processes that appear as the fork() ed child processes exit. If you make lots of zombies
and don’t reap them, your system administrator will become agitated.)

You can get the data from this server by using the client listed in the next section.

6.2 A Simple Stream Client

This guy’s even easier than the server. All this client does is connect to the host you specify on the
command line, port 3490. It gets the string that the server sends.

The client source?:

/)(-
** client.c -- a stream socket client demo
*/

#include <stdio.h>
#inc lude <stdlib.h>
#inc lude <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#inc lude <sys/socket.h>

#include <arpa/inet.h>

Zhttps://beej.us/guide/bgnet/source/examples/client.c

https://beej.us/guide/bgnet/source/examples/client.c

40

41

42

43

45

46

47

48

49

60

61

62

63

65

66

67

68

69

72

73

6.2. A Simple Stream Client

#define PORT "3490" // the port client will be connecting to
#define MAXDATASIZE 100 // max number of bytes we can get at once

// get sockaddr, IPv4 or IPV6:
void *get_in_addr(struct sockaddr *sa)

{
if (sa->sa_family == AF_INET) {
return &(((struct sockaddr_in*)sa)->sin_addr);
}
return &(((struct sockaddr_in6*)sa)->sin6_addr);
}

int main(int argc, char *argv[])

int sockfd, numbytes;

char buf[MAXDATASIZE];

struct addrinfo hints, *servinfo, *p;
int rv;

char s[INET6_ADDRSTRLEN];

if (argc !'= 2) {
fprintf(stderr,"usage: client hostname\n");
exit(1);

memset (&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;

if ((rv = getaddrinfo(argv[1], PORT, &hints, &servinfo)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
return 1;

// loop through all the results and connect to the first we can
for(p = servinfo; p != NULL; p = p->ai_next) {
if ((sockfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) == -1) {
perror("client: socket");
continue;

inet_ntop(p->ai_family,
get_in_addr((struct sockaddr *)p->ai_addr),
s, sizeof s);
printf("client: attempting connection to %s\n", s);

if (connect(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
perror("client: connect");
close(sockfd);
continue;

break;

39

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

40 Chapter 6. Client-Server Background

if (p == NULL) {
fprintf(stderr, "client: failed to connect\n");
return 2;

inet_ntop(p->ai_family,
get_in_addr((struct sockaddr *)p->ai_addr),
s, sizeof s);

printf("client: connected to %s\n", s);

freeaddrinfo(servinfo); // all done with this structure

if ((numbytes = recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) {
perror("recv");
exit(1);

}

buf[numbytes] = '\0';
printf("client: received '%s'\n", buf);
close(sockfd);

return 0O;

Notice that if you don’t run the server before you run the client, connect () returns “Connection refused”.
Very useful.

6.3 Datagram Sockets

We’ve already covered the basics of UDP datagram sockets with our discussion of sendto() and
recvfrom(), above, so I’ll just present a couple of sample programs: talker.c and listener.c.

listener sits on a machine waiting for an incoming packet on port 4950. talker sends a packet to that
port, on the specified machine, that contains whatever the user enters on the command line.

Because datagram sockets are connectionless and just fire packets off into the ether with callous disregard
for success, we are going to tell the client and server to use specifically IPv6. This way we avoid the
situation where the server is listening on IPv6 and the client sends on IPv4; the data simply would not be
received. (In our connected TCP stream sockets world, we might still have the mismatch, but the error on
connect () for one address family would cause us to retry for the other.)

Here is the source for listener.c?:

/*
** listener.c -- a datagram sockets "server" demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#inc lude <sys/types.h>

3https://beej.us/guide/bgnet/source/examples/listener.c

https://beej.us/guide/bgnet/source/examples/listener.c

40

41

42

43

45

46

47

48

49

60

61

62

63

65

66

67

6.3. Datagram Sockets

{

int

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define MYPORT "4950" // the port users will be connecting to
#define MAXBUFLEN 100

// get sockaddr, IPv4 or IPv6:
void *get_in_addr(struct sockaddr *sa)

if (sa->sa_family == AF_INET) {
return &(((struct sockaddr_in*)sa)->sin_addr);

return &(((struct sockaddr_in6*)sa)->sin6_addr);

main(void)

int sockfd;

struct addrinfo hints, *servinfo, *p;
int rv;

int numbytes;

struct sockaddr_storage their_addr;
char buf[MAXBUFLEN];

socklen_t addr_len;

char s[INET6_ADDRSTRLEN];

memset (&hints, 0, sizeof hints);

hints.ai_family = AF_INET6; // set to AF_INET to use IPv4
hints.ai socktype = SOCK_DGRAM;

hints.ai_flags = AI_PASSIVE; // use my IP

if ((rv = getaddrinfo(NULL, MYPORT, &hints, &servinfo)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
return 1;

// loop through all the results and bind to the first we can
for(p = servinfo; p != NULL; p = p->ai_next) {
if ((sockfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) == -1) {
perror("listener: socket");
continue;
}
if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
close(sockfd);
perror("listener: bind");
continue;
}
break;

41

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

42 Chapter 6. Client-Server Background

if (p == NULL) {
fprintf(stderr, "listener: failed to bind socket\n");
return 2;

freeaddrinfo(servinfo);
printf("listener: waiting to recvfrom...\n");

addr_len = sizeof their_addr;

if ((numbytes = recvfrom(sockfd, buf, MAXBUFLEN-1 , 0O,
(struct sockaddr *)&their_addr, &addr_len)) == -1) {
perror("recvfrom");
exit(1);

printf("listener: got packet from %s\n",
inet_ntop(their_addr.ss_family,
get_in_addr((struct sockaddr *)&their_addr),
s, sizeof s));
printf("listener: packet is %d bytes long\n", numbytes);
buf[numbytes] = '\0';
printf("listener: packet contains \"%s\"\n", buf);

close(sockfd);

return 0;

J

Notice that in our call to getaddrinfo() we’re finally using SOCK_DGRAM. Also, note that there’s no
need to listen() or accept (). This is one of the perks of using unconnected datagram sockets!

Next comes the source for talker.c*:

/*
** talker.c -- a datagram "client" demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#inc lude <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define SERVERPORT "4950" // the port users will be connecting to

int main(int argc, char *argv[])

{
int sockfd;
struct addrinfo hints, *servinfo, *p;
int rv;

“https://beej.us/guide/bgnet/source/examples/talker.c

https://beej.us/guide/bgnet/source/examples/talker.c

40

41

42

43

45

46

47

48

49

60

61

62

63

65

66

67

68

6.3. Datagram Sockets 43

int numbytes;

if (argc !'= 3) {
fprintf(stderr,"usage: talker hostname message\n");
exit(1);

memset (&hints, 0, sizeof hints);
hints.ai_family = AF_INET6; // set to AF_INET to use IPv4
hints.ai_socktype = SOCK_DGRAM;

rv = getaddrinfo(argv[1], SERVERPORT, &hints, &servinfo);
if (rv 1= 0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
return 1;

// loop through all the results and make a socket
for(p = servinfo; p != NULL; p = p->ai_next) {
if ((sockfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) == -1) {
perror("talker: socket");
continue;
}
break;

if (p == NULL) {
fprintf(stderr, "talker: failed to create socket\n");

return 2;
}
if ((numbytes = sendto(sockfd, argv[2], strlen(argv[2]), O,
p->ai_addr, p->ai_addrlen)) == -1) {
perror("talker: sendto");
exit(1);

freeaddrinfo(servinfo);

printf("talker: sent %d bytes to %s\n", numbytes, argv[1]);
close(sockfd);

return 0;

And that’s all there is to it! Run listener on some machine, then run talker on another. Watch them
communicate! Fun G-rated excitement for the entire nuclear family!

You don’t even have to run the server this time! You can run talker by itself, and it just happily fires
packets off into the ether where they disappear if no one is ready with a recvfrom() on the other side.
Remember: data sent using UDP datagram sockets isn’t guaranteed to arrive!

Except for one more tiny detail that I’ve mentioned many times in the past: connected datagram sockets.
I need to talk about this here, since we’re in the datagram section of the document. Let’s say that talker
calls connect () and specifies the listener’s address. From that point on, talker may only send to
and receive from the address specified by connect (). For this reason, you don’t have to use sendto()

44 Chapter 6. Client-Server Background

and recvfrom(); you can simply use send() and recv().

Chapter 7

Slightly Advanced Techniques

These aren’t really advanced, but they’re getting out of the more basic levels we’ve already covered. In
fact, if you’ve gotten this far, you should consider yourself fairly accomplished in the basics of Unix
network programming! Congratulations!

So here we go into the brave new world of some of the more esoteric things you might want to learn about
sockets. Have at it!

7.1 Blocking

Blocking. You’ve heard about it—now what the heck is it? In a nutshell, “block” is techie jargon for
“sleep”. You probably noticed that when you run listener, above, it just sits there until a packet arrives.
What happened is that it called recvfrom(), there was no data, and so recvfrom() is said to “block”
(that is, sleep there) until some data arrives.

Lots of functions block. accept () blocks. All the recv () functions block. The reason they can do this
is because they’re allowed to. When you first create the socket descriptor with socket (), the kernel sets
it to blocking. If you don’t want a socket to be blocking, you have to make a call to fcnt1():

#include <unistd.h>
#include <fcntl.h>

sockfd = socket(PF_INET, SOCK_STREAM, 0);
fcntl(sockfd, F_SETFL, O_NONBLOCK);

By setting a socket to non-blocking, you can effectively “poll” the socket for information. If you try to
read from a non-blocking socket and there’s no data there, it’s not allowed to block—it will return -1 and
errno will be set to EAGAIN or EWOULDBLOCK.

(Wait—it can return EAGAIN or EWOULDBLOCK? Which do you check for? The specification doesn’t
actually specify which your system will return, so for portability, check them both.)

Generally speaking, however, this type of polling is a bad idea. If you put your program in a busy-wait

looking for data on the socket, you’ll suck up CPU time like it was going out of style. A more elegant
solution for checking to see if there’s data waiting to be read comes in the following section on pol1().

45

46 Chapter 7. Slightly Advanced Techniques

7.2 poll()—Synchronous I/O Multiplexing

What you really want to be able to do is somehow monitor a bunch of sockets at once and then handle the
ones that have data ready. This way you don’t have to continuously poll all those sockets to see which are
ready to read.

A word of warning: poll() is horribly slow when it comes to giant numbers of connections. In
those circumstances, you’ll get better performance out of an event library such as libevent® that
attempts to use the fastest possible method availabile on your system.

9https://libevent.org/

So how can you avoid polling? Not slightly ironically, you can avoid polling by using the pol1() system
call. In a nutshell, we’re going to ask the operating system to do all the dirty work for us, and just let us
know when some data is ready to read on which sockets. In the meantime, our process can go to sleep,
saving system resources.

The general gameplan is to keep an array of struct pollfds with information about which socket de-
scriptors we want to monitor, and what kind of events we want to monitor for. The OS will block on the
poll() call until one of those events occurs (e.g. “socket ready to read!”) or until a user-specified timeout
occurs.

Usefully, a listen()ing socket will return “ready to read” when a new incoming connection is ready to
be accept()ed.

That’s enough banter. How do we use this?

#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

fds is our array of information (which sockets to monitor for what), nfds is the count of elements in the
array, and timeout is a timeout in milliseconds. It returns the number of elements in the array that have
had an event occur.

Let’s have a look at that struct:

struct pollfd {
int fd; // the socket descriptor
short events; // bitmap of events we're interested in
short revents; // on return, bitmap of events that occurred

}:

So we’re going to have an array of those, and we’ll set the fd field for each element to a socket descriptor
we’re interested in monitoring. And then we’ll set the events field to indicate the type of events we’re
interested in.

The events field is the bitwise-OR of the following:

Macro Description

POLLIN Alert me when data is ready to recv() on this socket.

POLLOUT Alert me when I can send () data to this socket without blocking.
POLLHUP Alert me when the remote closed the connection.

Once you have your array of struct pollfds in order, then you can pass it to pol1l(), also passing the
size of the array, as well as a timeout value in milliseconds. (You can specify a negative timeout to wait
forever.)

After poll() returns, you can check the revents field to see if POLLIN or POLLOUT is set, indicating that
event occurred.

https://libevent.org/

7.2. poll()—Synchronous I/O Multiplexing 47

(There’s actually more that you can do with the pol11() call. See the pol1() man page, below, for more
details.)

Here’s an example! where we’ll wait 2.5 seconds for data to be ready to read from standard input, i.e. when
you hit RETURN:

#include <stdio.h>
#include <poll.h>
int main(void)
{
struct pollfd pfds[1]; // More if you want to monitor more
pfds[0].fd = 0; // Standard input
pfds[0].events = POLLIN; // Tell me when ready to read
// If you needed to monitor other things, as well:
//pfds[1].fd = some_socket; // Some socket descriptor
//pfds[1].events = POLLIN; // Tell me when ready to read
printf("Hit RETURN or wait 2.5 seconds for timeout\n");
int num_events = poll(pfds, 1, 2500); // 2.5 second timeout
if (num_events == 0) {
printf("Poll timed out!\n");
} else {
int pollin_happened = pfds[0].revents & POLLIN;
if (pollin_happened) {
printf("File descriptor %d is ready to read\n",
pfds[0].fd);
} else {
printf("Unexpected event occurred: %d\n",
pfds[0].revents);
}
}
return 0;
}

Notice again that po11() returns the number of elements in the pfds array for which events have occurred.
It doesn’t tell you which elements in the array (you still have to scan for that), but it does tell you how
many entries have a non-zero revents field (so you can stop scanning after you find that many).

A couple questions might come up here: how to add new file descriptors to the set I pass to pol1()? For
this, simply make sure you have enough space in the array for all you need, or realloc () more space as
needed.

What about deleting items from the set? For this, you can copy the last element in the array over-top the
one you’re deleting. And then pass in one fewer as the count to pol1(). Another option is that you can
set any fd field to a negative number and pol1() will ignore it.

How can we put it all together into a chat server that you can telnet to?

What we’ll do is start a listener socket, and add it to the set of file descriptors to pol1(). (It will show
ready-to-read when there’s an incoming connection.)

Then we’ll add new connections to our struct pollfd array. And we’ll grow it dynamically if we run

Lhttps://beej.us/guide/bgnet/source/examples/poll.c

https://beej.us/guide/bgnet/source/examples/poll.c

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

48 Chapter 7. Slightly Advanced Techniques

out of space.
When a connection is closed, we’ll remove it from the array.

And when a connection is ready-to-read, we’ll read the data from it and send that data to all the other
connections so they can see what the other users typed.

So give this poll server? a try. Run it in one window, then telnet localhost 9034 from a number of
other terminal windows. You should be able to see what you type in one window in the other ones (after
you hit RETURN).

Not only that, but if you hit CTRL-] and type quit to exit telnet, the server should detect the disconnec-
tion and remove you from the array of file descriptors.

/*
** pollserver.c -- a cheezy multiperson chat server
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#inc lude <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <poll.h>

#define PORT '"9034" // Port we're listening on

/*
* Convert socket to IP address string.
* addr: struct sockaddr_in or struct sockaddr_in6
*/
const char *inet_ntop2(void *addr, char *buf, size_t size)
{
struct sockaddr_storage *sas = addr;
struct sockaddr_in *sa4;
struct sockaddr_in6 *sa6;
void *src;

switch (sas->ss_family) {

case AF_INET:
sa4 = addr;
src = &(sa4->sin_addr);
break;

case AF_INET6:
sa6 = addr;
src = &(sa6->sin6_addr);
break;

default:
return NULL;

return inet_ntop(sas->ss_family, src, buf, size);

Zhttps://beej.us/guide/bgnet/source/examples/pollserver.c

https://beej.us/guide/bgnet/source/examples/pollserver.c

45

46

47

48

49

60

61

62

63

65

66

67

68

69

70

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

7.2. poll()—Synchronous I/O Multiplexing

/*
* Return a listening socket.
*/
int get_listener_socket(void)
{
int listener; // Listening socket descriptor
int yes=1; // For setsockopt() SO_REUSEADDR, below
int rv;
struct addrinfo hints, *ai, *p;
// Get us a socket and bind it
memset (&hints, 0, sizeof hints);
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
if ((rv = getaddrinfo(NULL, PORT, &hints, &ai)) != 0) {
fprintf(stderr, "pollserver: %s\n", gai_strerror(rv));
exit(1);
}
for(p = ai; p != NULL; p = p->ai_next) {
listener = socket(p->ai_family, p->ai_socktype,
p->ai_protocol);
if (listener < 0) {
continue;
}
// Lose the pesky "address already in use" error message
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes,
sizeof (int));
if (bind(listener, p->ai_addr, p->ai_addrlen) < 0) {
close(listener);
continue;
}
break;
}
// If we got here, it means we didn't get bound
if (p == NULL) {
return -1;
}
freeaddrinfo(ai); // All done with this
// Listen
if (listen(listener, 10) == -1) {
return -1;
}
return listener;
}
/*

* Add a new file descriptor to the set.

49

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

146

147

148

149

150

151

152

153

154

155

156

157

158

50 Chapter 7. Slightly Advanced Techniques

*/
void add_to_pfds(struct pollfd **pfds, int newfd, int *fd_count,
int *fd_size)

// If we don't have room, add more space in the pfds array
if (*fd_count == *fd_size) {

*fd_size *= 2; // Double it

*pfds = realloc(*pfds, sizeof(**pfds) * (*fd_size));

(*pfds)[*fd_count].fd = newfd;
(*pfds)[*fd_count].events = POLLIN; // Check ready-to-read
(*pfds)[*fd_count].revents = 0;

(*fd_count)++;

/*
* Remove a file descriptor at a given index from the set.
*/
void del_from_pfds(struct pollfd pfds[], int i, int *fd_count)
{
// Copy the one from the end over this one
pfds[i] = pfds[*fd_count-1];

(*fd_count)--;

/*
* Handle incoming connections.
*/
void handle_new_connection(int listener, int *fd_count,
int *fd_size, struct pollfd **pfds)

{
struct sockaddr_storage remoteaddr; // Client address
socklen_t addrlen;
int newfd; // Newly accept()ed socket descriptor
char remoteIP[INET6_ADDRSTRLEN];
addrlen = sizeof remoteaddr;
newfd = accept(listener, (struct sockaddr *)&remoteaddr,
&addrlen);
if (newfd == -1) {
perror("accept");
} else {
add_to_pfds(pfds, newfd, fd_count, fd_size);
printf("pollserver: new connection from %s on socket %d\n",
inet_ntop2(&remoteaddr, remoteIP, sizeof remotelP),
newfd) ;
}
}
/*

* Handle regular client data or client hangups.
*/

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

212

213

214

215

7.2. poll()—Synchronous I/O Multiplexing

void handle_client_data(int listener, int *fd_count,
struct pollfd *pfds, int *pfd_i)

{
char buf[256]; // Buffer for client data
int nbytes = recv(pfds[*pfd_i].fd, buf, sizeof buf, 0);
int sender_fd = pfds[*pfd_i].fd;
if (nbytes <= 0) { // Got error or connection closed by client
if (nbytes == 0) {
// Connection closed
printf("pollserver: socket %d hung up\n", sender_fd);
} else {
perror("recv");
}
close(pfds[*pfd_i].fd); // Bye!
del_from_pfds(pfds, *pfd_i, fd_count);
// reexamine the slot we just deleted
(*pfd_i)--;
} else { // We got some good data from a client
printf("pollserver: recv from fd %d: %.*s", sender_fd,
nbytes, buf);
// Send to everyone!
for(int j = 0; j < *fd_count; j++) {
int dest_fd = pfds[j].fd;
// Except the listener and ourselves
if (dest_fd != listener && dest_fd != sender_fd) {
if (send(dest_fd, buf, nbytes, 0) == -1) {
perror("send");
}
}
}
}
}
/*
* Process all existing connections.
*/

struct pollfd **pfds)
{

for(int i = 0; i < *fd_count; i++) {

// Check if someone's ready to read
if ((*pfds)[i].revents & (POLLIN | POLLHUP)) {
// We got one!!

if ((*pfds)[i].fd == listener) {
// If we're the listener, it's a new connection
handle_new_connection(listener, fd_count, fd_size,
pfds);

void process_connections(int listener, int *fd_count, int *fd_size,

51

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

52 Chapter 7. Slightly Advanced Techniques

} else {
// Otherwise we're just a regular client
handle_client_data(listener, fd_count, *pfds, &i);

/*
* Main: create a listener and connection set, loop forever
* processing connections.
*/

int main(void)

{

int listener; // Listening socket descriptor

// Start off with room for 5 connections

// (We'll realloc as necessary)

int fd_size = 5;

int fd_count = 0;

struct pollfd *pfds = malloc(sizeof *pfds * fd_size);

// Set up and get a listening socket
listener = get_listener_socket();

if (listener == -1) {
fprintf(stderr, "error getting listening socket\n");
exit(1);

}

// Add the listener to set;

// Report ready to read on incoming connection
pfds[0].fd = listener;

pfds[0].events = POLLIN;

fd_count = 1; // For the listener
puts("pollserver: waiting for connections...");
// Main loop

for(;;) {
int poll_count = poll(pfds, fd_count, -1);

if (poll_count == -1) {
perror("poll");
exit(1);

}

// Run through connections looking for data to read
process_connections(listener, &fd_count, &fd_size, é&pfds);

free(pfds);

In the next section, we’ll look at a similar, older function called select(). Both select() and poll()
offer similar functionality and performance, and only really differ in how they’re used. select () might

7.3. select()—Synchronous I/O Multiplexing, Old School 53

be slightly more portable, but is perhaps a little clunkier in use. Choose the one you like the best, as long
as it’s supported on your system.

7.3 select()—Synchronous I/O Multiplexing, Old School

This function is somewhat strange, but it’s very useful. Take the following situation: you are a server and
you want to listen for incoming connections as well as keep reading from the connections you already
have.

No problem, you say, just an accept () and a couple of recv()s. Not so fast, buster! What if you’re
blocking on an accept () call? How are you going to recv() data at the same time? “Use non-blocking
sockets!” No way! You don’t want to be a CPU hog. What, then?

select() gives you the power to monitor several sockets at the same time. It’1l tell you which ones are
ready for reading, which are ready for writing, and which sockets have raised exceptions, if you really
want to know that.

A word of warning: select(), though very portable, is terribly slow when it comes to giant
numbers of connections. In those circumstances, you’ll get better performance out of an event
library such as libevent® that attempts to use the fastest possible method availabile on your system.

Yhttps://libevent.org/

Without any further ado, I’ll offer the synopsis of select():

#include <sys/time.h>
#inc lude <sys/types.h>
#include <unistd.h>

int select(int numfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

The function monitors “sets” of file descriptors; in particular readfds, writefds, and exceptfds. If
you want to see if you can read from standard input and some socket descriptor, sockfd, just add the file
descriptors 0 and sockfd to the set readfds. The parameter numfds should be set to the values of the
highest file descriptor plus one. In this example, it should be set to sockfd+1, since it is assuredly higher
than standard input (0).

When select() returns, readfds will be modified to reflect which of the file descriptors you selected
which is ready for reading. You can test them with the macro FD_ISSET(), below.

Before progressing much further, I’1l talk about how to manipulate these sets. Each set is of the type
fd_set. The following macros operate on this type:

Function Description

Add fd to the set.

FD_SET(int fd, fd_set *set);

Remove fd from the set.
FD_CLR(int fd, fd_set *set);

Return true if fd is in the set.
FD_ISSET(int fd, fd_set *set);

Clear all entries from the set.
FD_ZERO(fd_set *set);

Finally, what is this weirded-out struct timeval? Well, sometimes you don’t want to wait forever for
someone to send you some data. Maybe every 96 seconds you want to print “Still Going...” to the terminal
even though nothing has happened. This time structure allows you to specify a timeout period. If the time
is exceeded and select () still hasn’t found any ready file descriptors, it’ll return so you can continue
processing.

The struct timeval has the follow fields:

https://libevent.org/

20

21

22

23

24

25

26

27

28

29

30

31

32

54 Chapter 7. Slightly Advanced Techniques

struct timeval {
int tv_sec; // seconds
int tv_usec; // microseconds

Yy

Just set tv_sec to the number of seconds to wait, and set tv_usec to the number of microseconds to wait.
Yes, that’s _micro_seconds, not milliseconds. There are 1,000 microseconds in a millisecond, and 1,000
milliseconds in a second. Thus, there are 1,000,000 microseconds in a second. Why is it “usec”? The “u”
is supposed to look like the Greek letter p (Mu) that we use for “micro”. Also, when the function returns,
timeout might be updated to show the time still remaining. This depends on what flavor of Unix you’re
running.

Yay! We have a microsecond resolution timer! Well, don’t count on it. You’ll probably have to wait some
part of your standard Unix timeslice no matter how small you set your struct timeval.

Other things of interest: If you set the fields in your struct timevalto 0, select () will timeout imme-
diately, effectively polling all the file descriptors in your sets. If you set the parameter timeout to NULL,
it will never timeout, and will wait until the first file descriptor is ready. Finally, if you don’t care about
waiting for a certain set, you can just set it to NULL in the call to select ().

The following code snippet® waits 2.5 seconds for something to appear on standard input:

/*
** select.c -- a select() demo
*/

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#1include <unistd.h>

#define STDIN @ // file descriptor for standard input

int main(void)

{
struct timeval tv;
fd_set readfds;

tv.tv_sec = 2;
tv.tv_usec = 500000;

FD_ZERO(&readfds);
FD_SET(STDIN, é&readfds);

// don't care about writefds and exceptfds:
select (STDIN+1, &readfds, NULL, NULL, &tv);

if (FD_ISSET(STDIN, &readfds))
printf("A key was pressed!\n");
else
printf("Timed out.\n");

return 0;

If you’re on a line buffered terminal, the key you hit should be RETURN or it will time out anyway.

Now, some of you might think this is a great way to wait for data on a datagram socket—and you are right:

3https://beej.us/guide/bgnet/source/examples/select.c

https://beej.us/guide/bgnet/source/examples/select.c

7.3. select()—Synchronous I/O Multiplexing, Old School 55

it might be. Some Unices can use select in this manner, and some can’t. You should see what your local
man page says on the matter if you want to attempt it.

Some Unices update the time in your struct timeval to reflect the amount of time still remaining
before a timeout. But others do not. Don’t rely on that occurring if you want to be portable. (Use
gettimeofday() if you need to track time elapsed. It’s a bummer, I know, but that’s the way it is.)

What happens if a socket in the read set closes the connection? Well, in that case, select () returns with
that socket descriptor set as “ready to read”. When you actually do recv () from it, recv() will return 0.
That’s how you know the client has closed the connection.

One more note of interest about select (): if you have a socket that is listen()ing, you can check to
see if there is a new connection by putting that socket’s file descriptor in the readfds set.

And that, my friends, is a quick overview of the almighty select() function.

But, by popular demand, here is an in-depth example. Unfortunately, the difference between the dirt-
simple example, above, and this one here is significant. But have a look, then read the description that
follows it.

This program* acts like a simple multi-user chat server. Start it running in one window, then telnet to
it (“telnet hostname 9034”) from multiple other windows. When you type something in one telnet
session, it should appear in all the others.

/*
** selectserver.c -- a cheezy multiperson chat server
*/

#include <stdio.h>

#inc lude <stdlib.h>
#inc lude <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#inc lude <arpa/inet.h>
#inc lude <netdb.h>

#define PORT "9034" // port we're listening on

/*
* Convert socket to IP address string.
* addr: struct sockaddr_in or struct sockaddr_in6
*/
const char *inet_ntop2(void *addr, char *buf, size t size)
{
struct sockaddr_storage *sas = addr;
struct sockaddr_in *sa4;
struct sockaddr_in6 *sa6;
void *src;

switch (sas->ss_family) {

case AF_INET:
sa4 = addr;
src = &(sa4->sin_addr);
break;

case AF_INET6:
sa6 = addr;
src = &(sa6->sin6_addr);

“https://beej.us/guide/bgnet/source/examples/selectserver.c

https://beej.us/guide/bgnet/source/examples/selectserver.c

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

56 Chapter 7. Slightly Advanced Techniques

break;
default:
return NULL;
}
return inet_ntop(sas->ss_family, src, buf, size);
}
/*
* Return a listening socket
*/
int get_listener_socket(void)
{

struct addrinfo hints, *ai, *p;

int yes=1; // for setsockopt() SO_REUSEADDR, below
int rv;

int listener;

// get us a socket and bind it

memset(&hints, 0, sizeof hints);

hints.ai_family = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE;

if ((rv = getaddrinfo(NULL, PORT, &hints, &ai)) != 0) {
fprintf(stderr, "selectserver: %s\n'", gai_strerror(rv));
exit(1);

for(p = ai; p !'= NULL; p = p->ai_next) {
listener = socket(p->ai_family, p->ai_socktype,
p->ai_protocol);
if (listener < 0) {
continue;

// lose the pesky "address already in use'" error message
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes,
sizeof(int));

if (bind(listener, p->ai_addr, p->ai_addrlen) < 0) {
close(listener);
continue;

break;

// if we got here, it means we didn't get bound

if (p == NULL) {
fprintf(stderr, "selectserver: failed to bind\n");
exit(2);

freeaddrinfo(ai); // all done with this

// listen
if (listen(listener, 10) == -1) {

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

145

146

147

148

149

7.3. select()—Synchronous I/O Multiplexing, Old School

perror("listen");
exit(3);

return listener;

/*
* Add new incoming connections to the proper sets
*/
void handle_new_connection(int listener, fd_set *master, int *fdmax)
{
socklen_t addrlen;
int newfd; // newly accept()ed socket descriptor
struct sockaddr_storage remoteaddr; // client address
char remoteIP[INET6_ADDRSTRLEN];

addrlen = sizeof remoteaddr;
newfd = accept(listener,
(struct sockaddr *)&remoteaddr,

&addrlen);
if (newfd == -1) {
perror("accept");
} else {

FD_SET(newfd, master); // add to master set

if (newfd > *fdmax) { // keep track of the max
*fdmax = newfd;

}

printf("selectserver: new connection from %s on "
"socket %d\n",
inet_ntop2(&remoteaddr, remoteIP, sizeof remoteIP),

newfd) ;
}
}
/)(—
* Broadcast a message to all clients
*/

void broadcast(char *buf, int nbytes, int listener, int s,
fd_set *master, int fdmax)

{
for(int j = 0; j <= fdmax; j++) {
// send to everyone!
if (FD_ISSET(j, master)) {
// except the listener and ourselves
if (j !'= listener && j !'= s) {
if (send(j, buf, nbytes, 0) == -1) {
perror("send");
}
}
}
}
}
/*

* Handle client data and hangups

57

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

58 Chapter 7. Slightly Advanced Techniques

*/
void handle_client_data(int s, int listener, fd_set *master,
int fdmax)

char buf[256]; // buffer for client data
int nbytes;

// handle data from a client
if ((nbytes = recv(s, buf, sizeof buf, 0)) <= 0) {
// got error or connection closed by client
if (nbytes == 0) {
// connection closed
printf("selectserver: socket %d hung up\n", s);
} else {
perror("recv");
}
close(s); // bye!
FD_CLR(s, master); // remove from master set
} else {
// we got some data from a client
broadcast(buf, nbytes, listener, s, master, fdmax);

}
}
/*
* Main
*/
int main(void)
{
fd_set master; // master file descriptor list
fd_set read_fds; // temp file descriptor list for select()
int fdmax; // maximum file descriptor number
int listener; // listening socket descriptor

FD_ZERO(&master); // clear the master and temp sets
FD_ZERO(&read_fds);

listener = get_listener_socket();

// add the listener to the master set
FD_SET(listener, &master);

// keep track of the biggest file descriptor
fdmax = listener; // so far, it's this one

// main loop

for(;;) {
read_fds = master; // copy it
if (select(fdmax+1, &read_fds, NULL, NULL, NULL) == -1) {
perror("select");
exit(4);
}

// run through the existing connections looking for data
// to read
for(int i = 0; i <= fdmax; i++) {

207

208

209

210

211

212

213

214

215

216

217

1

2

4

7.4. Handling Partial send()s 59

if (FD_ISSET(i, &read_fds)) { // we got one!!

if (i == listener)
handle_new_connection(i, &master, &fdmax);
else
handle_client_data(i, listener, &master, fdmax);
}
}
}
return 0;

Notice I have two file descriptor sets in the code: master and read_fds. The first, master, holds all the
socket descriptors that are currently connected, as well as the socket descriptor that is listening for new
connections.

The reason I have the master set is that select () actually changes the set you pass into it to reflect
which sockets are ready to read. Since I have to keep track of the connections from one call of select()
to the next, I must store these safely away somewhere. At the last minute, I copy the master into the
read_fds, and then call select().

But doesn’t this mean that every time I get a new connection, I have to add it to the master set? Yup!
And every time a connection closes, I have to remove it from the master set? Yes, it does.

Notice I check to see when the listener socket is ready to read. When it is, it means I have a new
connection pending, and I accept () it and add it to the master set. Similarly, when a client connection
is ready to read, and recv() returns 0, I know the client has closed the connection, and I must remove it
from the master set.

If the client recv() returns non-zero, though, I know some data has been received. So I get it, and then
go through the master list and send that data to all the rest of the connected clients.

And that, my friends, is a less-than-simple overview of the almighty select () function.

Quick note to all you Linux fans out there: sometimes, in rare circumstances, Linux’s select () canreturn
“ready-to-read” and then not actually be ready to read! This means it will block on the read() after the
select() says it won’t! Why you little—! Anyway, the workaround solution is to set the 0_NONBLOCK
flag on the receiving socket so it errors with EWOULDBLOCK (which you can just safely ignore if it occurs).
See the fcnt1() reference page for more info on setting a socket to non-blocking.

In addition, here is a bonus afterthought: there is another function called pol1() which behaves much
the same way select () does, but with a different system for managing the file descriptor sets. Check it
out!

7.4 Handling Partial send()s

Remember back in the section about send(), above, when I said that send () might not send all the bytes
you asked it to? That is, you want it to send 512 bytes, but it returns 412. What happened to the remaining
100 bytes?

Well, they’re still in your little buffer waiting to be sent out. Due to circumstances beyond your control,
the kernel decided not to send all the data out in one chunk, and now, my friend, it’s up to you to get the
data out there.

You could write a function like this to do it, too:

#include <sys/types.h>
#include <sys/socket.h>

int sendall(int s, char *buf, int *1len)

60 Chapter 7. Slightly Advanced Techniques

{
int total = 0; // how many bytes we've sent
int bytesleft = *len; // how many we have left to send
int n;
while(total < *1len) {
n = send(s, buf+total, bytesleft, 0);
if (n == -1) { break; }
total += n;
bytesleft -= n;
}
*len = total; // return number actually sent here
return n==-1?-1:0; // return -1 on failure, 0 on success
}

In this example, s is the socket you want to send the data to, buf is the buffer containing the data, and
len is a pointer to an int containing the number of bytes in the buffer.

The function returns -1 on error (and errno is still set from the call to send()). Also, the number of
bytes actually sent is returned in len. This will be the same number of bytes you asked it to send, unless
there was an error. sendall() will do its best, huffing and puffing, to send the data out, but if there’s an
error, it gets back to you right away.

For completeness, here’s a sample call to the function:

char buf[10] = "Beej!";
int len;

len = strlen(buf);
if (sendall(s, buf, &len) == -1) {
perror("sendall");
printf("we only sent %d bytes because of the error!\n", len);

What happens on the receiver’s end when part of a packet arrives? If the packets are variable length,
how does the receiver know when one packet ends and another begins? Yes, real-world scenarios are a
royal pain in the donkeys. You probably have to encapsulate (remember that from the data encapsulation
section way back there at the beginning?) Read on for details!

7.5 Serialization—How to Pack Data

It’s easy enough to send text data across the network, you’re finding, but what happens if you want to
send some “binary” data like ints or floats? It turns out you have a few options.

1. Convert the number into text with a function like sprintf(), then send the text. The receiver will
parse the text back into a number using a function like strtol().

2. Just send the data raw, passing a pointer to the data to send().
3. Encode the number into a portable binary form. The receiver will decode it.
Sneak preview! Tonight only!
[Curtain raises]
Beej says, “I prefer Method Three, above!”
[THE END]

7.5. Serialization—How to Pack Data 61

(Before I begin this section in earnest, I should tell you that there are libraries out there for doing this,
and rolling your own and remaining portable and error-free is quite a challenge. So hunt around and do
your homework before deciding to implement this stuff yourself. I include the information here for those
curious about how things like this work.)

Actually all the methods, above, have their drawbacks and advantages, but, like I said, in general, I prefer
the third method. First, though, let’s talk about some of the drawbacks and advantages to the other two.

The first method, encoding the numbers as text before sending, has the advantage that you can easily
print and read the data that’s coming over the wire. Sometimes a human-readable protocol is excellent to
use in a non-bandwidth-intensive situation, such as with Internet Relay Chat (IRC)°. However, it has the
disadvantage that it is slow to convert, and the results almost always take up more space than the original
number!

Method two: passing the raw data. This one is quite easy (but dangerous!): just take a pointer to the data
to send, and call send with it.

double d = 3490.15926535;

send(s, &d, sizeof d, ©); /* DANGER--non-portable! */

The receiver gets it like this:

double d;

recv(s, &d, sizeof d, 0); /* DANGER--non-portable! */

Fast, simple—what’s not to like? Well, it turns out that not all architectures represent a double (or int
for that matter) with the same bit representation or even the same byte ordering! The code is decidedly
non-portable. (Hey—maybe you don’t need portability, in which case this is nice and fast.)

When packing integer types, we’ve already seen how the htons ()-class of functions can help keep things
portable by transforming the numbers into Network Byte Order, and how that’s the Right Thing to do.
Unfortunately, there are no similar functions for float types. Is all hope lost?

Fear not! (Were you afraid there for a second? No? Not even a little bit?) There is something we can
do: we can pack (or “marshal”, or “serialize”, or one of a thousand million other names) the data into a
known binary format that the receiver can unpack on the remote side.

What do I mean by “known binary format”? Well, we’ve already seen the htons() example, right? It
changes (or “encodes”, if you want to think of it that way) a number from whatever the host format is into
Network Byte Order. To reverse (unencode) the number, the receiver calls ntohs().

But didn’t I just get finished saying there wasn’t any such function for other non-integer types? Yes. I did.
And since there’s no standard way in C to do this, it’s a bit of a pickle (that a gratuitous pun there for you
Python fans).

The thing to do is to pack the data into a known format and send that over the wire for decoding. For
example, to pack floats, here’s something quick and dirty with plenty of room for improvement®:

#inc lude <stdint.h>

uint32_t htonf(float f)

{
uint32_t p;
uint32_t sign;

if (f <0) { sign =1; f = -f; }

Shttps:/en.wikipedia.org/wiki/Internet_Relay_Chat
Shttps://beej.us/guide/bgnet/source/examples/pack.c

https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://beej.us/guide/bgnet/source/examples/pack.c

20

21

22

23

24

25

26

27

28

62 Chapter 7. Slightly Advanced Techniques

else { sign = 0; }

// whole part and sign
p = ((((uint32_t)f)&ox7fff)<<16) | (sign<<31);

// fraction
p |= (uint32_t)(((f - (int)f) * 65536.0f))&OxFFff;

return p;
}
float ntohf(uint32_t p)
{
float f = ((p>>16)&ox7fff); // whole part
f += (p&Oxffff) / 65536.0f; // fraction
if (((p>>31)&60x1) == 0x1) { f = -f; } // sign bit set
return f;
}

The above code is sort of a naive implementation that stores a float in a 32-bit number. The high bit
(31) is used to store the sign of the number (“1” means negative), and the next seven bits (30-16) are used
to store the whole number portion of the float. Finally, the remaining bits (15-0) are used to store the
fractional portion of the number.

Usage is fairly straightforward:

#include <stdio.h>

int main(void)

{
float f = 3.1415926, f2;
uint32_t netf;
netf = htonf(f); // convert to "network" form
f2 = ntohf(netf); // convert back to test
printf("Original: %f\n", f); // 3.141593
printf(" Network: 0x%08X\n", netf); // 0x0003243F
printf("Unpacked: %f\n", f2); // 3.141586
return O;

}

On the plus side, it’s small, simple, and fast. On the minus side, it’s not an efficient use of space and the
range is severely restricted—try storing a number greater-than 32767 in there and it won’t be very happy!
You can also see in the above example that the last couple decimal places are not correctly preserved.

What can we do instead? Well, The Standard for storing floating point numbers is known as IEEE-754".
Most computers use this format internally for doing floating point math, so in those cases, strictly speaking,
conversion wouldn’t need to be done. But if you want your source code to be portable, that’s an assumption
you can’t necessarily make. (On the other hand, if you want things to be fast, you should optimize this
out on platforms that don’t need to do it! That’s what htons() and its ilk do.)

Here’s some code that encodes floats and doubles into IEEE-754 format®. (Mostly—it doesn’t encode
NaN or Infinity, but it could be modified to do that.)

"https://en.wikipedia.org/wiki/IEEE_754
8https://beej.us/guide/bgnet/source/examples/ieee754.c

https://en.wikipedia.org/wiki/IEEE_754
https://beej.us/guide/bgnet/source/examples/ieee754.c

40

41

42

43

45

46

47

48

49

7.5. Serialization—How to Pack Data 63

#define pack754_32(f) (pack754((f), 32, 8))
#define pack754_64(f) (pack754((f), 64, 11))
#define unpack754_32(1i) (unpack754((i), 32, 8))
#define unpack754_64(i) (unpack754((1), 64, 11))

uinté4_t pack754(long double f, unsigned bits, unsigned expbits)
{

long double fnorm;

int shift;

long long sign, exp, significand;

// -1 for sign bit
unsigned significandbits = bits - expbits - 1;

if (f == 0.0) return 0; // get this special case out of the way

// check sign and begin normalization
if (f < 0) { sign = 1; fnorm = -f; }
else { sign = 0; fnorm = f; }

// get the normalized form of f and track the exponent
shift = 0;

while(fnorm >= 2.0) { fnorm /= 2.0; shift++; }
while(fnorm < 1.0) { fnorm *= 2.0; shift--; }

fnorm = fnorm - 1.0;

// calculate the binary form (non-float) of the significand data
significand = fnorm * ((1lLL<<significandbits) + 0.5f);

// get the biased exponent
exp = shift + ((1<<(expbits-1)) - 1); // shift + bias

// return the final answer
return (sign<<(bits-1)) | (exp<<(bits-expbits-1)) | significand;

}

long double unpack754(uint64_t i, unsigned bits, unsigned expbits)
{

long double result;

long long shift;

unsigned bias;

// -1 for sign bit
unsigned significandbits = bits - expbits - 1;

if (i == 0) return 0.0;

// pull the significand

result = (i&((1lLL<<significandbits)-1)); // mask

result /= (1lLL<<significandbits); // convert back to float
result += 1.0f; // add the one back on

// deal with the exponent

bias = (1<<(expbits-1)) - 1;

shift = ((i>>significandbits)é&((1LL<<expbits)-1)) - bias;
while(shift > 0) { result *= 2.0; shift--; }

while(shift < 0) { result /= 2.0; shift++; }

58

59

60

61

62

63

20

21

22

23

24

25

26

27

28

64 Chapter 7. Slightly Advanced Techniques

// sign it
result *= (i>>(bits-1))&1? -1.0: 1.0;

return result;

I put some handy macros up there at the top for packing and unpacking 32-bit (probably a float) and
64-bit (probably a double) numbers, but the pack754() function could be called directly and told to
encode bits-worth of data (expbits of which are reserved for the normalized number’s exponent).

Here’s sample usage:

#include <stdio.h>
#include <stdint.h> // defines uintN_t types
#include <inttypes.h> // defines PRIXx macros
int main(void)
{
float f = 3.1415926, f2;
double d = 3.14159265358979323, d2;
uint32_t fi;
uint64_t di;
fi = pack754_32(f);
f2 = unpack754_32(fi);
di = pack754_64(d);
d2 = unpack754_64(di);
printf("float before : %.7f\n", f);
printf("float encoded: 0x%08" PRIx32 "\n", fi);
printf("float after : %.7f\n\n", f2);
printf("double before : %.201f\n", d);
printf("double encoded: 0x%016" PRIx64 "\n", di);
printf("double after : %.201f\n", d2);
return 0;
}

The above code produces this output:

float before : 3.1415925
float encoded: Ox40490FDA
float after : 3.1415925

double before : 3.14159265358979311600
double encoded: 0x400921FB54442D18
double after : 3.14159265358979311600

J

Another question you might have is how do you pack structs? Unfortunately for you, the compiler is
free to put padding all over the place in a struct, and that means you can’t portably send the whole thing
over the wire in one chunk. (Aren’t you getting sick of hearing “can’t do this”, “can’t do that”? Sorry!
To quote a friend, “Whenever anything goes wrong, I always blame Microsoft.” This one might not be
Microsoft’s fault, admittedly, but my friend’s statement is completely true.)

Back to it: the best way to send the struct over the wire is to pack each field independently and then

7.5. Serialization—How to Pack Data 65

unpack them into the struct when they arrive on the other side.

That’s a lot of work, is what you’re thinking. Yes, it is. One thing you can do is write a helper function to
help pack the data for you. It’ll be fun! Really!

In the book The Practice of Programming® by Kernighan and Pike, they implement printf()-like func-
tions called pack() and unpack() that do exactly this. I’d link to them, but apparently those functions
aren’t online with the rest of the source from the book.

(The Practice of Programming is an excellent read. Zeus saves a kitten every time I recommend it.)

At this point, I’'m going to drop a pointer to a Protocol Buffers implementation in C'° which I’ve never used,
but looks completely respectable. Python and Perl programmers will want to check out their language’s
pack () and unpack () functions for accomplishing the same thing. And Java has a big-ol’ Serializable
interface that can be used in a similar way.

But if you want to write your own packing utility in C, K&P’s trick is to use variable argument lists to
make printf()-like functions to build the packets. Here’s a version I cooked up'! on my own based on
that which hopefully will be enough to give you an idea of how such a thing can work.

(This code references the pack754 () functions, above. The packi* () functions operate like the familiar
htons () family, except they pack into a char array instead of another integer.)

#include <stdio.h>
#inc lude <ctype.h>
#inc lude <stdarg.h>
#include <string.h>

/*

** packil6() -- store a 16-bit int into a char buffer (like htons())
*/

void packil6(unsigned char *buf, unsigned int 1)

{

*buf++ = i>>8; *buf++ = i;

/*

** packi32() -- store a 32-bit int into a char buffer (like htonl())
*/

void packi32(unsigned char *buf, unsigned long int i)

{
*puf++ = i>>24; *buf++ = 1>>16;
*buf++ = i>>8; *buf++ = i;

}

/*

** packi64() -- store a 64-bit int into a char buffer (like htonl())
*/
void packi64(unsigned char *buf, unsigned long long int i)

{
*puf++ = 1>>56; *buf++ = 1>>48;
*puf++ = 1>>40; *buf++ = 1>>32;
*puf++ = 1>>24; *buf++ = i>>16;
*puf++ = i>>8; *buf++ = i;

}

/*

%https://beej.us/guide/url/tpop
10https://github.com/protobuf-c/protobuf-c
https://beej.us/guide/bgnet/source/examples/pack2.c

https://beej.us/guide/url/tpop
https://github.com/protobuf-c/protobuf-c
https://beej.us/guide/bgnet/source/examples/pack2.c

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

66 Chapter 7. Slightly Advanced Techniques

** unpackil6() -- unpack a 16-bit int from a char buffer (like

*x ntohs())

*/

int unpackil6(unsigned char *buf)
{

unsigned int i2 = ((unsigned int)buf[0]<<8) | buf[1];
int i;

// change unsigned numbers to signed
if (i2 <= ox7fffu) { i = i2; }
else { i = -1 - (unsigned int)(exffffu - i2); }

return i;
}
/*
** unpackul6() -- unpack a 16-bit unsigned from a char buffer (like
*x ntohs())
*/
unsigned int unpackul6(unsigned char *buf)
{
return ((unsigned int)buf[0]<<8) | buf[1];
}
/*
** unpacki32() -- unpack a 32-bit int from a char buffer (like
*H ntohl())
*/
long int unpacki32(unsigned char *buf)
{
unsigned long int i2 = ((unsigned long int)buf[0]<<24) |
((unsigned long int)buf[1]<<16) |
((unsigned long int)buf[2]<<8) |
buf[3];
long int 1i;
// change unsigned numbers to signed
if (i2 <= ox7fffffffu) { 1 = i2; }
else { i = -1 - (long int)(Oxffffffffu - i2); }
return i;
}
/*
** unpacku32() -- unpack a 32-bit unsigned from a char buffer (like
*H ntohl())
*/
unsigned long int unpacku32(unsigned char *buf)
{
return ((unsigned long int)buf[0]<<24) |
((unsigned long int)buf[1]<<16) |
((unsigned long int)buf[2]<<8) |
buf[3];
}
/*

** unpacki64() -- unpack a 64-bit int from a char buffer (like

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

7.5. Serialization—How to Pack Data

*E ntohl())

*/

long long int unpacki64(unsigned char *buf)
{

unsigned long long int i2 =
((unsigned long long int)buf[0]<<56)
((unsigned long long int)buf[1]<<48)
((unsigned long long int)buf[2]<<40)
((unsigned long long int)buf[3]<<32)
((unsigned long long int)buf[4]<<24)
((unsigned long long int)buf[5]<<16)
((unsigned long long int)buf[6]<<8)
buf[7];

long long int i;

// change unsigned numbers to signed
if (i2 <= Ox7fffffffffffffffu) { 1 = i2; }
else { i = -1 -(long long int)(exffffffffffffffffu - i2); }

return i;
}
/*
** unpacku64() -- unpack a 64-bit unsigned from a char buffer (like
i ntohl())
*/

unsigned long long int unpacku64(unsigned char *buf)
{
return ((unsigned long long int)buf[0]<<56) |

((unsigned long long int)buf[1]<<48) |
((unsigned long long int)buf[2]<<40) |
((unsigned long long int)buf[3]<<32) |
((unsigned long long int)buf[4]<<24) |
((unsigned long long int)buf[5]<<16) |
((unsigned long long int)buf[6]<<8) |
buf[7];

}

/*
** pack() -- store data dictated by the format string in the buffer

* *

** bits |signed unsigned float string

** _____ e coocooocoococooccoonooocoococooooo oo o
** 8 | @ c
* 16 | h H f
* 32 | 1 L d
o 64 | gq Q g
I

* *

* *

** (16-bit unsigned length is automatically prepended to strings)
*/

unsigned int pack(unsigned char *buf, char *format, ...)

{

va_list ap;

signed char c; // 8-bit

67

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

68

Chapter 7. Slightly Advanced Techniques

unsigned char C;

int h; // 16-bit
unsigned int H;

long int 1; // 32-bit
unsigned long int L;

long long int q; // 64-bit
unsigned long long int Q;

float f; // floats
double d;

long double g;

unsigned long long int fhold;

char *s; // strings
unsigned int len;

unsigned int size = 0;
va_start(ap, format);

for(; *format !'= '\0'; format++) {
switch(*format) {
case 'c': // 8-bit
size += 1;
c = (signed char)va_arg(ap, int); // promoted
*puf++ = c;
break;

case 'C': // 8-bit unsigned
size += 1;
C = (unsigned char)va_arg(ap, unsigned int); // promoted
*buf++ = C;
break;

case 'h': // 16-bit
size += 2;
h = va_arg(ap, int);
packil6(buf, h);
buf += 2;
break;

case 'H': // 16-bit unsigned
size += 2;
H = va_arg(ap, unsigned int);
packil6(buf, H);
buf += 2;
break;

case 'l': // 32-bit
size += 4,
1 = va_arg(ap, long int);
packi32(buf, 1);
buf += 4;
break;

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

262

7.5. Serialization—How to Pack Data 69

'L': // 32-bit unsigned
size += 4;
L = va_arg(ap, unsigned long int);
packi32(buf, L);
buf += 4;
break;

case 'q': // 64-bit

size += 8;

q = va_arg(ap, long long int);
packi6é4(buf, q);

buf += 8;

break;

case 'Q': // 64-bit unsigned

size += 8;

Q = va_arg(ap, unsigned long long int);
packi6é4(buf, Q);

buf += 8;

break;

'f': // float-16
size += 2;
f = (float)va_arg(ap, double); // promoted
fhold = pack754_16(f); // convert to IEEE 754
packil6(buf, fhold);
buf += 2;
break;

'd': // float-32
size += 4;
d = va_arg(ap, double);
fhold = pack754_32(d); // convert to IEEE 754
packi32(buf, fhold);
buf += 4;
break;

case 'g': // float-64

size += 8;

g = va_arg(ap, long double);

fhold = pack754_64(g); // convert to IEEE 754
packi64(buf, fhold);

buf += 8;

break;

's': // string
s = va_arg(ap, char*);
len = strlen(s);
size += len + 2;
packii6(buf, 1len);
buf += 2;
memcpy (buf, s, len);
buf += len;
break;

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

70 Chapter 7. Slightly Advanced Techniques

va_end(ap);

return size;

/*
** unpack() -- unpack data dictated by the format string into the
*HE buffer

* *

xx bits |signed unsigned float string

* %

**k oo e e e e e e e e e -
*% 8| ¢ c
* 16 | h H f
* 32 1 L d
o 64 | q Q g
I

* %

** (string is extracted based on its stored length, but 's' can be
** prepended with a max length)

*/

void unpack(unsigned char *buf, char *format, ...)

{

va_list ap;

signed char *c; // 8-bit
unsigned char *C;

int *h; // 16-bit
unsigned int *H;

long int *1; // 32-bit
unsigned long int *L;

long long int *q; // 64-bit
unsigned long long int *Q;

float *f; // floats
double *d;

long double *g;

unsigned long long int fhold;

char *s;
unsigned int len, maxstrlen=0, count;

va_start(ap, format);

for(; *format !'= '\0'; format++) {

switch(*format) {

case 'c': // 8-bit
c = va_arg(ap, signed char*);
if (*buf <= ox7f) { *c = *buf;} // re-sign
else { *c = -1 - (unsigned char)(0xffu - *buf); }
buf++;
break;

case 'C': // 8-bit unsigned

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

7.5. Serialization—How to Pack Data

C = va_arg(ap, unsigned char*);
*C = *buf++;
break;

case 'h': // 16-bit
h = va_arg(ap, int*);
*h = unpackil6(buf);
buf += 2;
break;

case 'H': // 16-bit unsigned
H = va_arg(ap, unsigned int*);
*H = unpackul6(buf);
buf += 2;
break;

case 'l': // 32-bit
1 = va_arg(ap, long int*);
*1 = unpacki32(buf);
buf += 4;
break;

case 'L': // 32-bit unsigned
L = va_arg(ap, unsigned long int*);
*L = unpacku32(buf);
buf += 4;
break;

case 'q': // 64-bit
g = va_arg(ap, long long int*);
*q = unpacki64(buf);
buf += 8;
break;

case 'Q': // 64-bit unsigned

Q = va_arg(ap, unsigned long long int*);

*Q = unpacku64(buf);
buf += 8;
break;

case 'f': // float
f = va_arg(ap, float*);
fhold = unpackul6(buf);
*f = unpack754_16(fhold);
buf += 2;
break;

case 'd': // float-32
d = va_arg(ap, double*);
fhold = unpacku32(buf);
*d = unpack754_32(fhold);
buf += 4;
break;

case 'g': // float-64
g = va_arg(ap, long double*);
fhold = unpacku64(buf);

71

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

72 Chapter 7. Slightly Advanced Techniques

*g = unpack754_64(fhold);
buf += 8;
break;

case 's': // string

s = va_arg(ap, char*);

len = unpackul6(buf);

buf += 2;

if (maxstrlen > 0 && len > maxstrlen)
count = maxstrlen - 1;

else
count = len;

memcpy(s, buf, count);

s[count] = '\0';

buf += len;

break;

default:
if (isdigit(*format)) { // track max str len
maxstrlen = maxstrlen * 10 + (*format-'0');

if (!isdigit(*format)) maxstrlen = 0;

va_end(ap);

And here is a demonstration program'? of the above code that packs some data into buf and then unpacks
it into variables. Note that when calling unpack() with a string argument (format specifier “s”), it’s
wise to put a maximum length count in front of it to prevent a buffer overrun, e.g. “96s”. Be wary when
unpacking data you get over the network—a malicious user might send badly-constructed packets in an
effort to attack your system!

#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>

// If you have a C23 compiler

#1f __STDC_VERSION__ >= 202311L

#include <stdfloat.h>

#else

// Otherwise let's define our own.

// Varies for different architectures! But you're probably:
typedef float float32_t;

typedef double float64_t;

#endif

int main(void)

{
uint8_t buf[1024];
int8_t magic;
int16_t monkeycount;
int32_t altitude;

12https://beej.us/guide/bgnet/source/examples/pack2.c

https://beej.us/guide/bgnet/source/examples/pack2.c

7.6. Son of Data Encapsulation 73

float32_t absurdityfactor;

char *s = "Great unmitigated Zot! You've found the Runestaff!";
char s2[96];

int16_t packetsize, ps2;

packetsize = pack(buf, "chhlsf", (int8_t)'B', (inti16_t)o,
(int16_t)37, (int32_t)-5, s, (float32_t)-3490.6677);
packil6(buf+1, packetsize); // store packet size for kicks

printf("packet is %" PRId32 " bytes\n'", packetsize);

unpack(buf, "chhl96sf", &magic, &ps2, &monkeycount, &altitude,
s2, &absurdityfactor);

printf("'%c' %" PRIA32" %" PRId16 " %" PRId32
"A"%s\" %f\n", magic, ps2, monkeycount,
altitude, s2, absurdityfactor);

Whether you roll your own code or use someone else’s, it’s a good idea to have a general set of data
packing routines for the sake of keeping bugs in check, rather than packing each bit by hand each time.

When packing the data, what’s a good format to use? Excellent question. Fortunately, REC 4506'2, the
External Data Representation Standard, already defines binary formats for a bunch of different types, like
floating point types, integer types, arrays, raw data, etc. I suggest conforming to that if you’re going to
roll the data yourself. But you’re not obligated to. The Packet Police are not right outside your door. At
least, I don’t think they are.

In any case, encoding the data somehow or another before you send it is the right way of doing things!

7.6 Son of Data Encapsulation

What does it really mean to encapsulate data, anyway? In the simplest case, it means you’ll stick a header
on there with either some identifying information or a packet length, or both.

What should your header look like? Well, it’s just some binary data that represents whatever you feel is
necessary to complete your project.

Wow. That’s vague.

Okay. For instance, let’s say you have a multi-user chat program that uses SOCK_STREAMs. When a user
types (“says”) something, two pieces of information need to be transmitted to the server: what was said
and who said it.

So far so good? “What’s the problem?” you’re asking.

The problem is that the messages can be of varying lengths. One person named “tom” might say, “Hi”,
and another person named “Benjamin” might say, “Hey guys what is up?”

So you send() all this stuff to the clients as it comes in. Your outgoing data stream looks like this:

tomHiBenjaminHeyguyswhatisup?

And so on. How does the client know when one message starts and another stops? You could, if you
wanted, make all messages the same length and just call the sendall() we implemented, above. But that
wastes bandwidth! We don’t want to send() 1024 bytes just so “tom” can say “Hi”.

So we encapsulate the data in a tiny header and packet structure. Both the client and server know how
to pack and unpack (sometimes referred to as “marshal” and “unmarshal”) this data. Don’t look now, but
we’re starting to define a protocol that describes how a client and server communicate!

B3https://tools.ietf.org/html/rfc4506

https://tools.ietf.org/html/rfc4506

74 Chapter 7. Slightly Advanced Techniques

In this case, let’s assume the user name is a fixed length of 8 characters, padded with '\@"'. And then let’s
assume the data is variable length, up to a maximum of 128 characters. Let’s have a look a sample packet
structure that we might use in this situation:

1. len (1 byte, unsigned)—The total length of the packet, counting the 8-byte user name and chat data.
2. name (8 bytes)—The user’s name, NUL-padded if necessary.

3. chatdata (n-bytes)—The data itself, no more than 128 bytes. The length of the packet should be
calculated as the length of this data plus 8 (the length of the name field, above).

Why did I choose the 8-byte and 128-byte limits for the fields? I pulled them out of the air, assuming
they’d be long enough. Maybe, though, 8 bytes is too restrictive for your needs, and you can have a
30-byte name field, or whatever. The choice is up to you.

Using the above packet definition, the first packet would consist of the following information (in hex and
ASCII):

0A 74 6F 6D 00 0O 0O 0O 060 48 69
(length) T o m (padding) H i

And the second is similar:

18 42 65 6E 6A 61 6D 69 6E 48 65 79 20 67 75 79 73 20 77 ...
(length) B e n j a m i n H e vy g u vy s w

(The length is stored in Network Byte Order, of course. In this case, it’s only one byte so it doesn’t matter,
but generally speaking you’ll want all your binary integers to be stored in Network Byte Order in your
packets.)

When you’re sending this data, you should be safe and use a command similar to sendall(), above, so
you know all the data is sent, even if it takes multiple calls to send () to get it all out.

Likewise, when you’re receiving this data, you need to do a bit of extra work. To be safe, you should
assume that you might receive a partial packet (like maybe we receive “18 42 65 6E 6A” from Benjamin,
above, but that’s all we get in this call to recv()). We need to call recv() over and over again until the
packet is completely received.

But how? Well, we know the number of bytes we need to receive in total for the packet to be complete,
since that number is tacked on the front of the packet. We also know the maximum packet size is 1+8+128,
or 137 bytes (because that’s how we defined the packet).

There are actually a couple things you can do here. Since you know every packet starts off with a length,
you can call recv() just to get the packet length. Then once you have that, you can call it again specifying
exactly the remaining length of the packet (possibly repeatedly to get all the data) until you have the
complete packet. The advantage of this method is that you only need a buffer large enough for one packet,
while the disadvantage is that you need to call recv() at least twice to get all the data.

Another option is just to call recv() and say the amount you’re willing to receive is the maximum number
of bytes in a packet. Then whatever you get, stick it onto the back of a buffer, and finally check to see if
the packet is complete. Of course, you might get some of the next packet, so you’ll need to have room for
that.

What you can do is declare an array big enough for two packets. This is your work array where you will
reconstruct packets as they arrive.

Every time you recv() data, you’ll append it into the work buffer and check to see if the packet is
complete. That is, the number of bytes in the buffer is greater than or equal to the length specified in the
header (+1, because the length in the header doesn’t include the byte for the length itself). If the number
of bytes in the buffer is less than 1, the packet is not complete, obviously. You have to make a special case
for this, though, since the first byte is garbage and you can’t rely on it for the correct packet length.

Once the packet is complete, you can do with it what you will. Use it, and remove it from your work
buffer.

7.7. Broadcast Packets—Hello, World! 75

Whew! Are you juggling that in your head yet? Well, here’s the second of the one-two punch: you might
have read past the end of one packet and onto the next in a single recv() call. That is, you have a work
buffer with one complete packet, and an incomplete part of the next packet! Bloody heck. (But this is
why you made your work buffer large enough to hold two packets—in case this happened!)

Since you know the length of the first packet from the header, and you’ve been keeping track of the number
of bytes in the work buffer, you can subtract and calculate how many of the bytes in the work buffer belong
to the second (incomplete) packet. When you’ve handled the first one, you can clear it out of the work
buffer and move the partial second packet down the to front of the buffer so it’s all ready to go for the next
recv().

(Some of you readers will note that actually moving the partial second packet to the beginning of the work
buffer takes time, and the program can be coded to not require this by using a circular buffer. Unfortunately
for the rest of you, a discussion on circular buffers is beyond the scope of this article. If you’re still curious,
grab a data structures book and go from there.)

I never said it was easy. Ok, I did say it was easy. And it is; you just need practice and pretty soon it’ll
come to you naturally. By Excalibur I swear it!

7.7 Broadcast Packets—Hello, World!

So far, this guide has talked about sending data from one host to one other host. But it is possible, I insist,
that you can, with the proper authority, send data to multiple hosts at the same time!

With UDP (only UDP, not TCP) and standard IPv4, this is done through a mechanism called broadcast-
ing. With IPv6, broadcasting isn’t supported, and you have to resort to the often superior technique of
multicasting, which, sadly I won’t be discussing at this time. But enough of the starry-eyed future—we’re
stuck in the 32-bit present.

But wait! You can’t just run off and start broadcasting willy-nilly; You have to set the socket option
SO_BROADCAST before you can send a broadcast packet out on the network. It’s like a one of those little
plastic covers they put over the missile launch switch! That’s just how much power you hold in your
hands!

But seriously, though, there is a danger to using broadcast packets, and that is: every system that receives
a broadcast packet must undo all the onion-skin layers of data encapsulation until it finds out what port
the data is destined to. And then it hands the data over or discards it. In either case, it’s a lot of work for
each machine that receives the broadcast packet, and since it is all of them on the local network, that could
be a lot of machines doing a lot of unnecessary work. When the game Doom first came out, this was a
complaint about its network code.

Now, there is more than one way to skin a cat... wait a minute. Is there really more than one way to skin
a cat? What kind of expression is that? Uh, and likewise, there is more than one way to send a broadcast
packet. So, to get to the meat and potatoes of the whole thing: how do you specify the destination address
for a broadcast message? There are two common ways:

1. Send the data to a specific subnet’s broadcast address. This is the subnet’s network number with all
one-bits set for the host portion of the address. For instance, at home my network is 192.168.1.0,
my netmask is 255.255.255.0, so the last byte of the address is my host number (because the
first three bytes, according to the netmask, are the network number). So my broadcast address is
192.168.1.255. Under Unix, the ifconfig command will actually give you all this data. (If
you’re curious, the bitwise logic to get your broadcast address is network_number OR (NOT
netmask).) You can send this type of broadcast packet to remote networks as well as your lo-
cal network, but you run the risk of the packet being dropped by the destination’s router. (If they
didn’t drop it, then some random smurf could start flooding their LAN with broadcast traffic.)

2. Send the data to the “global” broadcast address. Thisis 255.255.255.255, aka INADDR_BROADCAST.
Many machines will automatically bitwise AND this with your network number to convert it to a
network broadcast address, but some won’t. It varies. Routers do not forward this type of broadcast
packet off your local network, ironically enough.

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

76 Chapter 7. Slightly Advanced Techniques

So what happens if you try to send data on the broadcast address without first setting the SO_BROADCAST
socket option? Well, let’s fire up good old talker and listener and see what happens.

$ talker 192.168.1.2 foo
sent 3 bytes to 192.168.1.2
$ talker 192.168.1.255 foo
sendto: Permission denied

$ talker 255.255.255.255 foo
sendto: Permission denied

Yes, it’s not happy at all...because we didn’t set the SO_BROADCAST socket option. Do that, and now you
can sendto() anywhere you want!

In fact, that’s the only difference between a UDP application that can broadcast and one that can’t. So let’s
take the old talker application and add one section that sets the SO_BROADCAST socket option. We’ll call
this program broadcaster.c!4:

/)(—

** broadcaster.c -- a datagram '"client" like talker.c, except
o this one can broadcast

*/

#include <stdio.h>
#inc lude <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define SERVERPORT 4950 // the port users will be connecting to

int main(int argc, char *argv[])
{
int sockfd;
struct sockaddr_in their_addr; // connector's address info
struct hostent *he;
int numbytes;
int broadcast = 1;
//char broadcast = '1'; // if that doesn't work, try this

if (argc !'= 3) {
fprintf(stderr, "usage: broadcaster hostname message\n");
exit(1);

if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
perror("gethostbyname");
exit(1);

if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
perror("socket");

14https://beej.us/guide/bgnet/source/examples/broadcaster.c

https://beej.us/guide/bgnet/source/examples/broadcaster.c

40

41

42

43

45

46

47

48

49

66

67

68

69

7.7. Broadcast Packets—Hello, World! 77

exit(1);

// this call is what allows broadcast packets to be sent:
if (setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &broadcast,

sizeof broadcast) == -1) {
perror("setsockopt (SO_BROADCAST)");
exit(1);
}
their_addr.sin_family = AF_INET; // host byte order

their_addr.sin_port = htons(SERVERPORT); // network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset (their_addr.sin_zero, '\0', sizeof their_addr.sin_zero);

numbytes = sendto(sockfd, argv[2], strlen(argv[2]), O,
(struct sockaddr *)&their_addr, sizeof their_addr);

if (numbytes == -1) {
perror("sendto");
exit(1);

}

printf("sent %d bytes to %s\n", numbytes,
inet_ntoa(their_addr.sin_addr));

close(sockfd);

return 0;

What’s different between this and a “normal” UDP client/server situation? Nothing! (With the exception
of the client being allowed to send broadcast packets in this case.) As such, go ahead and run the old UDP
listener program in one window, and broadcaster in another. You should be now be able to do all
those sends that failed, above.

$ broadcaster 192.168.1.2 foo
sent 3 bytes to 192.168.1.2

$ broadcaster 192.168.1.255 foo
sent 3 bytes to 192.168.1.255

$ broadcaster 255.255.255.255 foo
sent 3 bytes to 255.255.255.255

And you should see listener responding that it got the packets. (If Listener doesn’t respond, it could
be because it’s bound to an IPv6 address. Try changing the AF_INET6 in listener.c to AF_INET to
force IPv4.)

Well, that’s kind of exciting. But now fire up listener on another machine next to you on the same
network so that you have two copies going, one on each machine, and run broadcaster again with your
broadcast address... Hey! Both listeners get the packet even though you only called sendto() once!
Cool!

If the listener gets data you send directly to it, but not data on the broadcast address, it could be that
you have a firewall on your local machine that is blocking the packets. (Yes, Pat and Bapper, thank you
for realizing before I did that this is why my sample code wasn’t working. I told you I’d mention you in
the guide, and here you are. So nyah.)

Again, be careful with broadcast packets. Since every machine on the LAN will be forced to deal with
the packet whether it recvfrom()s it or not, it can present quite a load to the entire computing network.

78 Chapter 7. Slightly Advanced Techniques

They are definitely to be used sparingly and appropriately.

Chapter 8

Common Questions

Where can I get those header files?

If you don’t have them on your system already, you probably don’t need them. Check the manual for your
particular platform. If you’re building for Windows, you only need to #include <winsock.h>.

What do I do when bind() reports “Address already in use”?

You have to use setsockopt () with the SO_REUSEADDR option on the listening socket. Check out the
section on bind() and the section on select () for an example.

How do I get a list of open sockets on the system?

Use the netstat. Check the man page for full details, but you should get some good output just typing:

$ netstat

The only trick is determining which socket is associated with which program. : -)
How can I view the routing table?

Run the route command (in /sbin on most Linuxes) or the command netstat -r. Or the command
ip route.

How can I run the client and server programs if I only have one computer? Don’t I need a network
to write network programs?

Fortunately for you, virtually all machines implement a loopback network “device” that sits in the kernel
and pretends to be a network card. (This is the interface listed as “10” in the routing table.)

Pretend you’re logged into a machine named “goat”. Run the client in one window and the server in
another. Or start the server in the background (“server &”) and run the client in the same window.
The upshot of the loopback device is that you can either client goat or client localhost (since
“localhost” is likely defined in your /etc/hosts file) and you’ll have the client talking to the server
without a network!

In short, no changes are necessary to any of the code to make it run on a single non-networked machine!
Huzzah!

How can I tell if the remote side has closed connection?
You can tell because recv() will return 0.

How do I implement a “ping” utility? What is ICMP? Where can I find out more about raw sockets
and SOCK_RAW?

All your raw sockets questions will be answered in W. Richard Stevens’ UNIX Network Programming
books. Also, look in the ping/ subdirectory in Stevens’ UNIX Network Programming source code, avail-
able online'.

Thttp://www.unpbook.com/src.html

79

http://www.unpbook.com/src.html
http://www.unpbook.com/src.html

80 Chapter 8. Common Questions

How do I change or shorten the timeout on a call to connect()?

Instead of giving you exactly the same answer that W. Richard Stevens would give you, I'll just refer you
to lib/connect_nonb.c in the UNIX Network Programming source code?.

The gist of it is that you make a socket descriptor with socket (), set it to non-blocking, call connect (),
and if all goes well connect () will return -1 immediately and errno will be set to EINPROGRESS. Then
you call select () with whatever timeout you want, passing the socket descriptor in both the read and
write sets. If it doesn’t timeout, it means the connect () call completed. At this point, you’ll have to use
getsockopt () with the SO_ERROR option to get the return value from the connect () call, which should
be zero if there was no error.

Finally, you’ll probably want to set the socket back to be blocking again before you start transferring data
over it.

Notice that this has the added benefit of allowing your program to do something else while it’s connecting,
too. You could, for example, set the timeout to something low, like 500 ms, and update an indicator
onscreen each timeout, then call select () again. When you’ve called select () and timed-out, say, 20
times, you’ll know it’s time to give up on the connection.

Like I said, check out Stevens’ source for a perfectly excellent example.
How do I build for Windows?

First, delete Windows and install Linux or BSD. }; -). No, actually, just see the section on building for
Windows in the introduction.

How do I build for Selaris/SunOS? I keep getting linker errors when I try to compile!

The linker errors happen because Sun boxes don’t automatically compile in the socket libraries. See the
section on building for Solaris/SunOS in the introduction for an example of how to do this.

Why does select() keep falling out on a signal?

Signals tend to cause blocked system calls to return -1 with errno set to EINTR. When you set up a signal
handler with sigaction(), you can set the flag SA_RESTART, which is supposed to restart the system
call after it was interrupted.

Naturally, this doesn’t always work.

My favorite solution to this involves a goto statement. You know this irritates your professors to no end,
so go for it!

1 | select_restart:

2 | if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {
3 if (errno == EINTR) {

4 // some signal just interrupted us, so restart

5 goto select_restart;

6 }

7 // handle the real error here:

8 perror("select");

o | }

J

Sure, you don’t need to use goto in this case; you can use other structures to control it. But I think the
goto statement is actually cleaner.

How can I implement a timeout on a call to recv()?

Use select()! It allows you to specify a timeout parameter for socket descriptors that you’re looking to
read from. Or, you could wrap the entire functionality in a single function, like this:

1 | #include <unistd.h>
2 | #include <sys/time.h>

Zhttp://www.unpbook.com/src.html

http://www.unpbook.com/src.html

40

41

42

43

45

81

#inc lude <sys/types.h>
#inc lude <sys/socket.h>

int recvtimeout(int s, char *buf, int 1len, int timeout)

{
fd_set fds;
int n;
struct timeval tv;
// set up the file descriptor set
FD_ZERO(&fds);
FD_SET(s, &fds);
// set up the struct timeval for the timeout
tv.tv_sec = timeout;
tv.tv_usec = 0;
// wait until timeout or data received
n = select(s+1, &fds, NULL, NULL, &tv);
if (n == Q) return -2; // timeout!
if (n == -1) return -1; // error
// data must be here, so do a normal recv()
return recv(s, buf, len, 0);
}

// Sample call to recvtimeout():
n = recvtimeout(s, buf, sizeof buf, 10); // 10 second timeout

if (n == -1) {
// error occurred
perror("recvtimeout");
}
else if (n == -2) {
// timeout occurred
} else {
// got some data in buf

Notice that recvtimeout () returns -2 in case of a timeout. Why not return 0? Well, if you recall, a
return value of 0 on a call to recv() means that the remote side closed the connection. So that return
value is already spoken for, and -1 means “error”, so I chose -2 as my timeout indicator.

How do I encrypt or compress the data before sending it through the socket?

One easy way to do encryption is to use SSL (secure sockets layer), but that’s beyond the scope of this
guide. (Check out the OpenSSL project® for more info.)

But assuming you want to plug in or implement your own compressor or encryption system, it’s just a
matter of thinking of your data as running through a sequence of steps between both ends. Each step
changes the data in some way.

1. server reads data from file (or wherever)

3https://www.openssl.org/

https://www.openssl.org/

82 Chapter 8. Common Questions

2. server encrypts/compresses data (you add this part)
3. server send()s encrypted data

Now the other way around:

1. client recv()s encrypted data
2. client decrypts/decompresses data (you add this part)
3. client writes data to file (or wherever)

If you’re going to compress and encrypt, just remember to compress first. : -)

Just as long as the client properly undoes what the server does, the data will be fine in the end no matter
how many intermediate steps you add.

So all you need to do to use my code is to find the place between where the data is read and the data is
sent (using send()) over the network, and stick some code in there that does the encryption.

What is this “PF_INET” I keep seeing? Is it related to AF_INET?
Yes, yes it is. See the section on socket () for details.
How can I write a server that accepts shell commands from a client and executes them?

For simplicity, lets say the client connect()s, send()s, and close()s the connection (that is, there are
no subsequent system calls without the client connecting again).

The process the client follows is this:

1. connect() to server
2. send("/sbin/1s > /tmp/client.out")
3. close() the connection

Meanwhile, the server is handling the data and executing it:

1. accept () the connection from the client
2. recv(str) the command string

3. close() the connection

4. system(str) to run the command

Beware! Having the server execute what the client says is like giving remote shell access and people can
do things to your account when they connect to the server. For instance, in the above example, what if the
client sends “rm -rf ~”? It deletes everything in your account, that’s what!

So you get wise, and you prevent the client from using any except for a couple utilities that you know are
safe, like the foobar utility:

if (!strncmp(str, "foobar", 6)) {
sprintf(sysstr, "%s > /tmp/server.out", str);
system(sysstr);

But you’re still unsafe, unfortunately: what if the client enters “foobar; rm -rf ~”? The safest thing to
do is to write a little routine that puts an escape (“\”) character in front of all non-alphanumeric characters
(including spaces, if appropriate) in the arguments for the command.

As you can see, security is a pretty big issue when the server starts executing things the client sends.

I’m sending a slew of data, but when I recv(), it only receives 536 bytes or 1460 bytes at a time.
But if I run it on my local machine, it receives all the data at the same time. What’s going on?

You’re hitting the MTU—the maximum size the physical medium can handle. On the local machine,
you’re using the loopback device which can handle 8K or more no problem. But on Ethernet, which can
only handle 1500 bytes with a header, you hit that limit. Over a modem, with 576 MTU (again, with
header), you hit the even lower limit.

You have to make sure all the data is being sent, first of all. (See the sendall() function implementation
for details.) Once you’re sure of that, then you need to call recv() in a loop until all your data is read.

83

Read the section Son of Data Encapsulation for details on receiving complete packets of data using mul-
tiple calls to recv().

I’m on a Windows box and I don’t have the fork() system call or any kind of struct sigaction.
What to do?

If they’re anywhere, they’ll be in POSIX libraries that may have shipped with your compiler. Since I
don’t have a Windows box, I really can’t tell you the answer, but I seem to remember that Microsoft has
a POSIX compatibility layer and that’s where fork() would be. (And maybe even sigaction.)

Search the help that came with VC++ for “fork” or “POSIX” and see if it gives you any clues.

If that doesn’t work at all, ditch the fork()/sigaction stuff and replace it with the Win32 equivalent:
CreateProcess(). I don’t know how to use CreateProcess()—it takes a bazillion arguments, but it
should be covered in the docs that came with VC++.

I’m behind a firewall—how do I let people outside the firewall know my IP address so they can
connect to my machine?

Unfortunately, the purpose of a firewall is to prevent people outside the firewall from connecting to ma-
chines inside the firewall, so allowing them to do so is basically considered a breach of security.

This isn’t to say that all is lost. For one thing, you can still often connect () through the firewall if it’s
doing some kind of masquerading or NAT or something like that. Just design your programs so that you’re
always the one initiating the connection, and you’ll be fine.

If that’s not satisfactory, you can ask your sysadmins to poke a hole in the firewall so that people can
connect to you. The firewall can forward to you either through it’s NAT software, or through a proxy or
something like that.

Be aware that a hole in the firewall is nothing to be taken lightly. You have to make sure you don’t give
bad people access to the internal network; if you’re a beginner, it’s a lot harder to make software secure
than you might imagine.

Don’t make your sysadmin mad at me. ; -)
How do I write a packet sniffer? How do I put my Ethernet interface into promiscuous mode?

For those not in the know, when a network card is in “promiscuous mode”, it will forward ALL packets
to the operating system, not just those that were addressed to this particular machine. (We’re talking
Ethernet-layer addresses here, not IP addresses—but since ethernet is lower-layer than IP, all IP addresses
are effectively forwarded as well. See the section Low Level Nonsense and Network Theory for more
info.)

This is the basis for how a packet sniffer works. It puts the interface into promiscuous mode, then the OS
gets every single packet that goes by on the wire. You’ll have a socket of some type that you can read this
data from.

Unfortunately, the answer to the question varies depending on the platform, but if you Google for, for
instance, “windows promiscuous ioctl” you’ll probably get somewhere. For Linux, there’s what looks
like a useful Stack Overflow thread®, as well.

How can I set a custom timeout value for a TCP or UDP socket?

It depends on your system. You might search the net for SO_RCVTIMEO and SO_SNDTIMEO (for use with
setsockopt()) to see if your system supports such functionality.

The Linux man page suggests using alarm() or setitimer () as a substitute.
How can I tell which ports are available to use? Is there a list of “official” port numbers?

Usually this isn’t an issue. If you’re writing, say, a web server, then it’s a good idea to use the well-known
port 80 for your software. If you’re writing just your own specialized server, then choose a port at random
(but greater than 1023) and give it a try.

“https://stackoverflow.com/questions/21323023/

https://stackoverflow.com/questions/21323023/

84 Chapter 8. Common Questions

If the port is already in use, you’ll get an “Address already in use” error when you try to bind(). Choose
another port. (It’s a good idea to allow the user of your software to specify an alternate port either with a
config file or a command line switch.)

There is a list of official port numbers® maintained by the Internet Assigned Numbers Authority (IANA).
Just because something (over 1023) is in that list doesn’t mean you can’t use the port. For instance, Id
Software’s DOOM uses the same port as “mdgs”, whatever that is. All that matters is that no one else on
the same machine is using that port when you want to use it.

Shttps://www.iana.org/assignments/port-numbers

https://www.iana.org/assignments/port-numbers

Chapter 9

Man Pages

In the Unix world, there are a lot of manuals. They have little sections that describe individual functions
that you have at your disposal.

Of course, manual would be too much of a thing to type. I mean, no one in the Unix world, including
myself, likes to type that much. Indeed I could go on and on at great length about how much I prefer to be
terse but instead I shall be brief and not bore you with long-winded diatribes about how utterly amazingly
brief I prefer to be in virtually all circumstances in their entirety.

[Applause]

Thank you. What I am getting at is that these pages are called “man pages” in the Unix world, and I have
included my own personal truncated variant here for your reading enjoyment. The thing is, many of these
functions are way more general purpose than I’m letting on, but I’m only going to present the parts that
are relevant for Internet Sockets Programming.

But wait! That’s not all that’s wrong with my man pages:

* They are incomplete and only show the basics from the guide.

 There are many more man pages than this in the real world.

They are different than the ones on your system.

* The header files might be different for certain functions on your system.

 The function parameters might be different for certain functions on your system.

If you want the real information, check your local Unix man pages by typing man whatever, where
“whatever” is something that you’re incredibly interested in, such as “accept”. (I’'m sure Microsoft
Visual Studio has something similar in their help section. But “man” is better because it is one byte more
concise than “help”. Unix wins again!)

So, if these are so flawed, why even include them at all in the Guide? Well, there are a few reasons, but
the best are that (a) these versions are geared specifically toward network programming and are easier to
digest than the real ones, and (b) these versions contain examples!

Oh! And speaking of the examples, I don’t tend to put in all the error checking because it really increases
the length of the code. But you should absolutely do error checking pretty much any time you make any
of the system calls unless you’re totally 100% sure it’s not going to fail, and you should probably do it
even then!

9.1 accept()
Accept an incoming connection on a listening socket

85

86 Chapter 9. Man Pages

Synopsis

#include <sys/types.h>
#inc lude <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Description

Once you’ve gone through the trouble of getting a SOCK_STREAM socket and setting it up for incoming
connections with listen(), then you call accept () to actually get yourself a new socket descriptor to
use for subsequent communication with the newly connected client.

The old socket that you are using for listening is still there, and will be used for further accept () calls as
they come in.

Parameter Description

s The listen()ing socket descriptor.

addr This is filled in with the address of the site that’s connecting to you.

addrlen This is filled in with the sizeof () the structure returned in the addr parameter. You

can safely ignore it if you assume you’re getting a struct sockaddr_in back, which
you know you are, because that’s the type you passed in for addr.

accept () will normally block, and you can use select () to peek on the listening socket descriptor ahead
of time to see if it’s “ready to read”. If so, then there’s a new connection waiting to be accept()ed! Yay!
Alternatively, you could set the 0_NONBLOCK flag on the listening socket using fcnt1(), and then it will
never block, choosing instead to return -1 with errno set to ENOULDBLOCK.

The socket descriptor returned by accept () is a bona fide socket descriptor, open and connected to the
remote host. You have to close() it when you’re done with it.

Return Value

accept () returns the newly connected socket descriptor, or -1 on error, with errno set appropriately.

Example

struct sockaddr_storage their_addr;
socklen_t addr_size;

struct addrinfo hints, *res;

int sockfd, new_fd;

// first, load up address structs with getaddrinfo():

memset (&hints, 0, sizeof hints);

hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;

hints.ai flags = AI_PASSIVE; // fill in my IP for me
getaddrinfo(NULL, MYPORT, &hints, &res);

// make a socket, bind it, and listen on 1it:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai protocol);

bind(sockfd, res->ai_addr, res->ai_addrlen);
listen(sockfd, BACKLOG);

9.2. bind() 87

// now accept an incoming connection:

addr_size = sizeof their_addr;
new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &addr_size);

// ready to communicate on socket descriptor new_fd!

See Also

socket (), getaddrinfo(), listen(), struct sockaddr_in

9.2 bind()

Associate a socket with an IP address and port number

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

Description

When a remote machine wants to connect to your server program, it needs two pieces of information: the
IP address and the port number. The bind () call allows you to do just that.

First, you call getaddrinfo() to load up a struct sockaddr with the destination address and port
information. Then you call socket () to get a socket descriptor, and then you pass the socket and address
into bind(), and the IP address and port are magically (using actual magic) bound to the socket!

If you don’t know your IP address, or you know you only have one IP address on the machine, or you don’t
care which of the machine’s IP addresses is used, you can simply pass the AI_PASSIVE flag in the hints
parameter to getaddrinfo(). What this does is fill in the IP address part of the struct sockaddr with
a special value that tells bind () that it should automatically fill in this host’s IP address.

What what? What special value is loaded into the struct sockaddr’s IP address to cause it to
auto-fill the address with the current host? I’ll tell you, but keep in mind this is only if you’re filling
out the struct sockaddr by hand; if not, use the results from getaddrinfo(), as per above. In
IPv4, the sin_addr.s_addr field of the struct sockaddr_in structure is set to INADDR_ANY. In
IPv6, the sin6_addr field of the struct sockaddr_in6 structure is assigned into from the global
variable in6addr_any. Or, if you’re declaring a new struct in6_addr, you can initialize it to
INGADDR_ANY_INIT.

Lastly, the addr len parameter should be set to sizeof my_addr.

Return Value

Returns zero on success, or -1 on error (and errno will be set accordingly).

88 Chapter 9. Man Pages

Example

// modern way of doing things with getaddrinfo()

struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset (&hints, ©, sizeof hints);

hints.ai family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE; // fill in my IP for me

getaddrinfo(NULL, "3490", &hints, &res);

// make a socket:
// (you should actually walk the "res" linked list and error-check!)

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
// bind it to the port we passed in to getaddrinfo():

bind(sockfd, res->ai_addr, res->ai_addrlen);

// example of packing a struct by hand, IPv4

struct sockaddr_in myaddr;
int s;

myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(3490);

// you can specify an IP address:
inet_pton(AF_INET, "63.161.169.137", &(myaddr.sin_addr));

// or you can let it automatically select one:
myaddr.sin_addr.s_addr = INADDR_ANY;

s = socket(PF_INET, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)&myaddr, sizeof myaddr);

See Also

getaddrinfo(), socket(), struct sockaddr_in, struct in_addr

9.3 connect()

Connect a socket to a server

9.3. connect() 89

Synopsis

#include <sys/types.h>
#inc lude <sys/socket.h>

int connect(int sockfd, const struct sockaddr *serv_addr,
socklen_t addrlen);

Description

Once you’ve built a socket descriptor with the socket () call, you can connect () that socket to a remote
server using the well-named connect () system call. All you need to do is pass it the socket descriptor
and the address of the server you’re interested in getting to know better. (Oh, and the length of the address,
which is commonly passed to functions like this.)

Usually this information comes along as the result of a call to getaddrinfo(), but you can fill out your
own struct sockaddr if you want to.

If you haven’t yet called bind() on the socket descriptor, it is automatically bound to your IP address
and a random local port. This is usually just fine with you if you’re not a server, since you really don’t
care what your local port is; you only care what the remote port is so you can put it in the serv_addr
parameter. You can call bind() if you really want your client socket to be on a specific IP address and
port, but this is pretty rare.

Once the socket is connect ()ed, you’re free to send() and recv() data on it to your heart’s content.

Special note: if you connect () a SOCK_DGRAM UDP socket to a remote host, you can use send() and
recv() as well as sendto() and recvfrom(). If you want.

Return Value

Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

// connect to www.example.com port 80 (http)

struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():
memset (&hints, ©, sizeof hints);
hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever

hints.ai_socktype = SOCK_STREAM;

// we could put "80" instead on "http" on the next line:
getaddrinfo("www.example.com", "http", &hints, &res);

// make a socket:
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

// connect it to the address and port we passed in to getaddrinfo():

connect(sockfd, res->ai_addr, res->ai_addrlen);

90 Chapter 9. Man Pages

See Also

socket (), bind()

9.4 close()

Close a socket descriptor

Synopsis

#include <unistd.h>

int close(int s);

Description

After you’ve finished using the socket for whatever demented scheme you have concocted and you don’t
want to send() or recv() or, indeed, do anything else at all with the socket, you can close() it, and
it’ll be freed up, never to be used again.

The remote side can tell if this happens one of two ways. One: if the remote side calls recv (), it will
return 0. Two: if the remote side calls send(), it’ll receive a signal SIGPIPE and send() will return -1
and errno will be set to EPIPE.

Windows users: the function you need to use is called closesocket (), not close(). If you try to use
close() on a socket descriptor, it’s possible Windows will get angry... And you wouldn’t like it when
it’s angry.

Return Value

Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

s = socket(PF_INET, SOCK_DGRAM, 0);

// a whole lotta stuff...*BRRRONNNN!*

close(s); // not much to it, really.

See Also

socket (), shutdown()

9.5 getaddrinfo(), freeaddrinfo(), gai_strerror()

Get information about a host name and/or service and load up a struct sockaddr with the result.

9.5. getaddrinfo(), freeaddrinfo(),gai_strerror() 91

Synopsis

#include <sys/types.h>

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo(const char *nodename, const char *servname,
const struct addrinfo *hints,
struct addrinfo **res);

void freeaddrinfo(struct addrinfo *ai);

const char *gai_strerror(int ecode);

struct addrinfo {

int ai_flags; // AI_PASSIVE, AI_CANONNAME,

int ai_family; // AF_XXX

int ai_socktype; // SOCK_xxx

int ai_protocol; // 0 (auto) or IPPROTO_TCP, IPPROTO_UDP
socklen_t ai_addrlen; // length of ai_addr

char *ali_canonname; // canonical name for nodename

struct sockaddr *ai_addr; // binary address
struct addrinfo *ai_next; // next structure in linked list

Y

Description

getaddrinfo() is an excellent function that will return information on a particular host name (such as
its IP address) and load up a struct sockaddr for you, taking care of the gritty details (like if its IPv4 or
IPv6). It replaces the old functions gethostbyname () and getservbyname().The description, below,
contains a lot of information that might be a little daunting, but actual usage is pretty simple. It might be
worth it to check out the examples first.

The host name that you’re interested in goes in the nodename parameter. The address can be either a host
name, like “www.example.com”, or an IPv4 or IPv6 address (passed as a string). This parameter can also
be NULL if you’re using the AI_PASSIVE flag (see below).

The servname parameter is basically the port number. It can be a port number (passed as a string, like
“80”), or it can be a service name, like “http” or “tftp” or “smtp” or “pop”, etc. Well-known service names
can be found in the IANA Port List! or in your /etc/services file.

Lastly, for input parameters, we have hints. This is really where you get to define what the
getaddrinfo() function is going to do. Zero the whole structure before use with memset (). Let’s take
a look at the fields you need to set up before use.

The ai_flags can be set to a variety of things, but here are a couple important ones. (Multiple flags can
be specified by bitwise-ORing them together with the | operator). Check your man page for the complete
list of flags.

AI_CANONNAME causes the ai_canonname of the result to the filled out with the host’s canonical
(real) name. AI_PASSIVE causes the result’s IP address to be filled out with INADDR_ANY (IPv4)
or in6addr_any (IPv6); this causes a subsequent call to bind() to auto-fill the IP address of the
struct sockaddr with the address of the current host. That’s excellent for setting up a server when you
don’t want to hardcode the address.

If you do use the AT_PASSIVE, flag, then you can pass NULL in the nodename (since bind() will fill it in
for you later).

https://www.iana.org/assignments/port-numbers

https://www.iana.org/assignments/port-numbers

20

21

22

23

24

25

26

27

28

29

30

31

32

92 Chapter 9. Man Pages

Continuing on with the input parameters, you’ll likely want to set ai_family to AF_UNSPEC which tells
getaddrinfo() to look for both IPv4 and IPv6 addresses. You can also restrict yourself to one or the
other with AF_INET or AF_INET6.

Next, the socktype field should be set to SOCK_STREAM or SOCK_DGRAM, depending on which type of
socket you want.

Finally, just leave ai_protocol at 0 to automatically choose your protocol type.
Now, after you get all that stuff in there, you can finally make the call to getaddrinfo()!

Of course, this is where the fun begins. The res will now point to a linked list of struct addrinfos,
and you can go through this list to get all the addresses that match what you passed in with the hints.

Now, it’s possible to get some addresses that don’t work for one reason or another, so what the Linux man
page does is loops through the list doing a call to socket () and connect () (or bind() if you’re setting
up a server with the AI_PASSIVE flag) until it succeeds.

Finally, when you’re done with the linked list, you need to call freeaddrinfo() to free up the memory
(or it will be leaked, and Some People will get upset).

Return Value

Returns zero on success, or nonzero on error. If it returns nonzero, you can use the function
gai_strerror () to get a printable version of the error code in the return value.

Example

// code for a client connecting to a server
// namely a stream socket to www.example.com on port 80 (http)
// either IPv4 or IPv6

int sockfd;
struct addrinfo hints, *servinfo, *p;
int rv;

memset (&hints, 0, sizeof hints);
hints.ai family = AF_UNSPEC; // use AF_INET6 to force IPv6
hints.ai_socktype = SOCK_STREAM;

rv = getaddrinfo("www.example.com", "http", &hints, &servinfo);
if (rv !'=0) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(rv));
exit(1);

// loop through all the results and connect to the first we can
for(p = servinfo; p != NULL; p = p->ai_next) {
if ((sockfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) == -1) {
perror("socket");
continue;
}
if (connect(sockfd, p->ai_addr, p->ai_addrlen) == -1) {

perror("connect");
close(sockfd);
continue;

20

21

22

23

24

9.5. getaddrinfo(), freeaddrinfo(), gai_strerror()

break; // if we get here, we must have connected successfully

if (p == NULL) {
// looped off the end of the list with no connection
fprintf(stderr, "failed to connect\n");
exit(2);

freeaddrinfo(servinfo); // all done with this structure

93

// code for a server waiting for connections
// namely a stream socket on port 3490, on this host's IP
// either IPv4 or IPV6.

int sockfd;
struct addrinfo hints, *servinfo, *p;
int rv;

memset (&hints, 0, sizeof hints);

hints.ai_family = AF_UNSPEC; // use AF_INET6 to force IPv6
hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE; // use my IP address

if ((rv = getaddrinfo(NULL, "3490", &hints, &servinfo)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n'", gai_strerror(rv));
exit(1);

// loop through all the results and bind to the first we can
for(p = servinfo; p != NULL; p = p->ai_next) {
if ((sockfd = socket(p->ai_family, p->ai_socktype,
p->ai_protocol)) == -1) {
perror("socket");
continue;

if (bind(sockfd, p->ai_addr, p->ai_addrlen) == -1) {
close(sockfd);
perror("bind");
continue;

break; // if we get here, we must have connected successfully

if (p == NULL) {
// looped off the end of the list with no successful bind
fprintf(stderr, "failed to bind socket\n");
exit(2);

freeaddrinfo(servinfo); // all done with this structure

94 Chapter 9. Man Pages

See Also

gethostbyname(), getnameinfo()

9.6 gethostname()

Returns the name of the system

Synopsis

#include <sys/unistd.h>

int gethostname(char *name, size t len);

Description

Your system has a name. They all do. This is a slightly more Unixy thing than the rest of the networky
stuff we’ve been talking about, but it still has its uses.

For instance, you can get your host name, and then call gethostbyname () to find out your IP address.

The parameter name should point to a buffer that will hold the host name, and 1en is the size of that buffer
in bytes. gethostname () won’t overwrite the end of the buffer (it might return an error, or it might just
stop writing), and it will NUL-terminate the string if there’s room for it in the buffer.

Return Value

Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

char hostname[128];

gethostname(hostname, sizeof hostname);
printf("My hostname: %s\n", hostname);

See Also

gethostbyname()

9.7 gethostbyname(), gethostbyaddr ()

Get an IP address for a hostname, or vice-versa

Synopsis

#include <sys/socket.h>
#include <netdb.h>

struct hostent *gethostbyname(const char *name); // DEPRECATED!/
struct hostent *gethostbyaddr(const char *addr, int len, int type);

9.7. gethostbyname(), gethostbyaddr () 95

Description

PLEASE NOTE: these two functions are superseded by getaddrinfo() and getnameinfo()! In partic-
ular, gethostbyname () doesn’t work well with IPv6.

These functions map back and forth between host names and IP addresses. For instance, if you
have “www.example.com”, you can use gethostbyname() to get its IP address and store it in a
struct in_addr.

Conversely, if you have a struct in_addr or a struct in6_addr, you can use gethostbyaddr () to
get the hostname back. gethostbyaddr () is IPv6 compatible, but you should use the newer shinier
getnameinfo() instead.

(If you have a string containing an IP address in dots-and-numbers format that you want to look up the
hostname of, you’d be better off using getaddrinfo() with the AL_CANONNAME flag.)

gethostbyname () takes a string like “www.yahoo.com”, and returns a struct hostent which contains
tons of information, including the IP address. (Other information is the official host name, a list of aliases,
the address type, the length of the addresses, and the list of addresses—it’s a general-purpose structure
that’s pretty easy to use for our specific purposes once you see how.)

gethostbyaddr () takes a struct in_addr or struct in6_addr and brings you up a corresponding
host name (if there is one), so it’s sort of the reverse of gethostbyname(). As for parameters, even
though addr is a char*, you actually want to pass in a pointer to a struct in_addr. len should be
sizeof(struct in_addr), and type should be AF_INET.

So what is this struct hostent that gets returned? It has a number of fields that contain information
about the host in question.

Field Description

char *h_name The real canonical host name.

char **h_aliases A list of aliases that can be accessed with arrays—the last element is
NULL

int h_addrtype The result’s address type, which really should be AF_INET for our
purposes.

int length The length of the addresses in bytes, which is 4 for IP (version 4)
addresses.

char **h_addr_1list A list of IP addresses for this host. Although this is a char**, it’s

really an array of struct in_addr*s in disguise. The last array
element is NULL.

h_addr A commonly defined alias for h_addr_1ist[0]. If you just want any
old IP address for this host (yeah, they can have more than one) just
use this field.

Return Value

Returns a pointer to a resultant struct hostent on success, or NULL on error.

Instead of the normal perror () and all that stuff you’d normally use for error reporting, these functions
have parallel results in the variable h_errno, which can be printed using the functions herror () or
hstrerror(). These work just like the classic errno, perror(), and strerror() functions you’re
used to.

Example

// THIS IS A DEPRECATED METHOD OF GETTING HOST NAMES
// use getaddrinfo() instead!

#include <stdio.h>
#include <errno.h>

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

96 Chapter 9. Man Pages

#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(int argc, char *argv[])

{

int 1i;

struct hostent *he;

struct in_addr **addr_1list;

if (argc !'= 2) {
fprintf(stderr, "usage: ghbn hostname\n");
return 1;

}

if ((he = gethostbyname(argv[1l])) == NULL) { // get host info
herror("gethostbyname");
return 2;

}

// print information about this host:

printf("official name is: %s\n", he->h_name);

printf(" IP addresses: ");

addr_1list = (struct in_addr **)he->h_addr_1list;

for(i = 0; addr_list[i] != NULL; i++) {
printf("%s ", inet_ntoa(*addr_1list[i]));

}

printf("\n");

return 0;

}

// THIS HAS BEEN SUPERSEDED
// use getnameinfo() instead!

struct hostent *he;
struct in_addr ipv4addr;
struct in6_addr ipve6addr;

inet_pton(AF_INET, "192.0.2.34", &ipv4addr);
he = gethostbyaddr (&ipv4addr, sizeof ipv4addr, AF_INET);
printf("Host name: %s\n", he->h_name);

inet_pton(AF_INET6, "2001:db8:63b3:1::beef", &ipv6addr);
he = gethostbyaddr(&ipv6addr, sizeof ipv6addr, AF_INET6);
printf("Host name: %s\n", he->h_name);

See Also

getaddrinfo(), getnameinfo(), gethostname(), errno,perror(),strerror(),struct in_addr

9.8. getnameinfo() 97

9.8 getnameinfo()

Look up the host name and service name information for a given struct sockaddr.

Synopsis

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, size t hostlen,
char *serv, size_ t servlen, int flags);

Description

This function is the opposite of getaddrinfo(), that is, this function takes an already loaded
struct sockaddr and does a name and service name lookup on it. It replaces the old gethostbyaddr ()
and getservbyport () functions.

You have to passin a pointer to a struct sockaddr (which in actuality is probably a struct sockaddr_in
or struct sockaddr_in6 that you’ve cast) in the sa parameter, and the length of that struct in the
salen.

The resultant host name and service name will be written to the area pointed to by the host and serv
parameters. Of course, you have to specify the max lengths of these buffers in hostlen and servlen.

Finally, there are several flags you can pass, but here a a couple good ones. NI_NOFQDN will cause the
host to only contain the host name, not the whole domain name. NI_NAMEREQD will cause the function
to fail if the name cannot be found with a DNS lookup (if you don’t specify this flag and the name can’t
be found, getnameinfo() will put a string version of the IP address in host instead).

As always, check your local man pages for the full scoop.

Return Value

Returns zero on success, or non-zero on error. If the return value is non-zero, it can be passed to
gai_strerror() to get a human-readable string. See getaddrinfo for more information.

Example

struct sockaddr_in6 sa; // could be IPv4 if you want
char host[1024];
char service[20];

// pretend sa is full of good information about the host and port...

getnameinfo(&sa, sizeof sa, host, sizeof host, service,
sizeof service, 0);

printf(" host: %s\n", host); // e.g. "www.example.com"
printf("service: %s\n", service); // e.g. "http"

See Also

getaddrinfo(), gethostbyaddr ()

20

21

22

23

98 Chapter 9. Man Pages

9.9 getpeername()

Return address info about the remote side of the connection

Synopsis

#include <sys/socket.h>

int getpeername(int s, struct sockaddr *addr, socklen_t *1len);

Description

Once you have either accept ()ed a remote connection, or connect ()ed to a server, you now have what
is known as a peer. Your peer is simply the computer you’re connected to, identified by an IP address and
a port. So...

getpeername () simply returns a struct sockaddr_in filled with information about the machine you’re
connected to.

Why is it called a “name”? Well, there are a lot of different kinds of sockets, not just Internet Sockets
like we’re using in this guide, and so “name” was a nice generic term that covered all cases. In our case,
though, the peer’s “name” is it’s IP address and port.

Although the function returns the size of the resultant address in len, you must preload len with the size
of addr.

Return Value

Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

// assume s 1s a connected socket

socklen_t len;

struct sockaddr_storage addr;
char ipstr[INET6_ADDRSTRLEN];
int port;

len = sizeof addr;
getpeername(s, (struct sockaddr*)&addr, &len);

// deal with both IPv4 and IPv6:

if (addr.ss_family == AF_INET) {
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
port = ntohs(s->sin_port);
inet_ntop(AF_INET, &s->sin_addr, ipstr, sizeof ipstr);

} else { // AF_INET6
struct sockaddr_in6é *s = (struct sockaddr_in6 *)&addr;
port = ntohs(s->sin6_port);
inet_ntop(AF_INET6, &s->sin6_addr, ipstr, sizeof ipstr);

printf("Peer IP address: %s\n", ipstr);
printf("Peer port : %d\n", port);

9.10. errno 99

See Also

gethostname (), gethostbyname(), gethostbyaddr ()

9.10 errno

Holds the error code for the last system call

Synopsis

#include <errno.h>

int errno;

Description

This is the variable that holds error information for a lot of system calls. If you’ll recall, things like
socket() and listen() return -1 on error, and they set the exact value of errno to let you know
specifically which error occurred.

The header file errno. h lists a bunch of constant symbolic names for errors, such as EADDRINUSE, EPIPE,
ECONNREFUSED, etc. Your local man pages will tell you what codes can be returned as an error, and you
can use these at run time to handle different errors in different ways.

Or, more commonly, you can call perror () or strerror() to get a human-readable version of the error.

One thing to note, for you multithreading enthusiasts, is that on most systems errno is defined in a
threadsafe manner. (That is, it’s not actually a global variable, but it behaves just like a global variable
would in a single-threaded environment.)

Return Value
The value of the variable is the latest error to have transpired, which might be the code for “success” if

the last action succeeded.

Example

s = socket(PF_INET, SOCK_STREAM, 0);
if (s == -1) {
perror("socket"); // or use strerror()

tryagain:
if (select(n, &readfds, NULL, NULL) == -1) {
// an error has occurred!!

// 1f we were only interrupted, just restart the select() call:
if (errno == EINTR) goto tryagain; // AAAA! goto!!!

// otherwise it's a more serious error:
perror("select");
exit(1);

100 Chapter 9. Man Pages

See Also

perror(), strerror()

9.11 fentl()

Control socket descriptors

Synopsis

#inc lude <sys/unistd.h>
#inc lude <sys/fcntl.h>

int fentl(int s, int cmd, long arg);

Description

This function is typically used to do file locking and other file-oriented stuff, but it also has a couple
socket-related functions that you might see or use from time to time.

Parameter s is the socket descriptor you wish to operate on, cmd should be set to F_SETFL, and arg can
be one of the following commands. (Like I said, there’s more to fcnt1() than I’m letting on here, but
I’m trying to stay socket-oriented.)

cmd Description

Set the socket to be non-blocking. See the section on blocking for more details.
O_NONBLOCK

Set the socket to do asynchronous I/O. When data is ready to be recv()’d on the
O_ASYNC

socket, the signal SIGIO will be raised. This is rare to see, and beyond the scope
of the guide. And I think it’s only available on certain systems.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly).

Different uses of the fcnt 1(') system call actually have different return values, but I haven’t covered them
here because they’re not socket-related. See your local fcnt1() man page for more information.

Example

int s = socket(PF_INET, SOCK_STREAM, 0);

fentl(s, F_SETFL, O_NONBLOCK); // set to non-blocking
fentl(s, F_SETFL, O_ASYNC); // set to asynchronous I/0

See Also
Blocking, send()

9.12 htons(), htonl(), ntohs(), ntohl()

Convert multi-byte integer types from host byte order to network byte order

9.12. htons(), htonl(), ntohs(),ntohl() 101

Synopsis

#include <netinet/in.h>

uint32_t htonl(uint32_t hostlong);
uintl16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);

uint16_t ntohs(uint16_t netshort);

Description

Just to make you really unhappy, different computers use different byte orderings internally for their
multibyte integers (i.e. any integer that’s larger than a char). The upshot of this is that if you send() a
two-byte short int from an Intel box to a Mac (before they became Intel boxes, too, I mean), what one
computer thinks is the number 1, the other will think is the number 256, and vice-versa.

The way to get around this problem is for everyone to put aside their differences and agree that Motorola
and IBM had it right, and Intel did it the weird way, and so we all convert our byte orderings to “big-
endian” before sending them out. Since Intel is a “little-endian” machine, it’s far more politically correct
to call our preferred byte ordering “Network Byte Order”. So these functions convert from your native
byte order to network byte order and back again.

(This means on Intel these functions swap all the bytes around, and on PowerPC they do nothing because
the bytes are already in Network Byte Order. But you should always use them in your code anyway, since
someone might want to build it on an Intel machine and still have things work properly.)

Note that the types involved are 32-bit (4 byte, probably int) and 16-bit (2 byte, very likely short)
numbers. 64-bit machines might have a hton11() for 64-bit ints, but I’ve not seen it. You’ll just have
to write your own.

Anyway, the way these functions work is that you first decide if you’re converting from host (your ma-
chine’s) byte order or from network byte order. If “host”, the the first letter of the function you’re going
to call is “h”. Otherwise it’s “n” for “network”. The middle of the function name is always “to” because
you’re converting from one “to” another, and the penultimate letter shows what you’re converting to. The
last letter is the size of the data, “s” for short, or “1” for long. Thus:

Function Description

htons() host to network short
htonl() host to network long
ntohs() network to host short
ntohl() network to host long

Return Value

Each function returns the converted value.

Example

uint32_t some_long = 10;
uintl6_t some_short = 20;

uint32_t network_byte_order;
// convert and send

network_byte_order = htonl(some_long);
send(s, &network_byte order, sizeof(uint32_t), 0);

102 Chapter 9. Man Pages

10 | some_short == ntohs(htons(some_short)); // this expression 1is true

9.13 inet_ntoa(), inet_aton(), inet_addr

Convert IP addresses from a dots-and-number string to a struct in_addr and back

Synopsis

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

// ALL THESE ARE DEPRECATED!/
// Use inet_pton() or inet_ntop() instead!

char *inet_ntoa(struct in_addr in);
int inet_aton(const char *cp, struct in_addr *inp);
in_addr_t inet_addr(const char *cp);

Description

These functions are deprecated because they don’t handle IPv6! Use inet_ntop() or inet_pton()
instead! They are included here because they can still be found in the wild.

All of these functions convert from a struct in_addr (part of your struct sockaddr_in, most likely)
to a string in dots-and-numbers format (e.g. “192.168.5.10”) and vice-versa. If you have an IP address
passed on the command line or something, this is the easiest way to geta struct in_addr to connect ()
to, or whatever. If you need more power, try some of the DNS functions like gethostbyname() or
attempt a coup d’Etat in your local country.

The function inet_ntoa() converts a network address in a struct in_addr to a dots-and-numbers
format string. The “n” in “ntoa” stands for network, and the “a” stands for ASCII for historical reasons
(so it’s “Network To ASCII”—the “toa” suffix has an analogous friend in the C library called atoi()
which converts an ASCII string to an integer).

The function inet_aton() is the opposite, converting from a dots-and-numbers string into a in_addr_t
(which is the type of the field s_addr in your struct in_addr).

Finally, the function inet_addr () is an older function that does basically the same thing as inet_aton().
It’s theoretically deprecated, but you’ll see it a lot and the police won’t come get you if you use it.

Return Value
inet_aton() returns non-zero if the address is a valid one, and it returns zero if the address is invalid.

inet_ntoa() returns the dots-and-numbers string in a static buffer that is overwritten with each call to
the function.

inet_addr () returns the address as an in_addr_t, or -1 if there’s an error. (That is the same result
as if you tried to convert the string “255.255.255.255”, which is a valid IP address. This is why
inet_aton() is better.)

9.14. inet_ntop(), inet_pton() 103

Example

struct sockaddr_in antelope;
char *some_addr;

inet_aton("10.0.0.1", &antelope.sin_addr); // store IP in antelope

some_addr = inet_ntoa(antelope.sin_addr); // return the IP
printf("%s\n", some_addr); // prints "10.0.0.1"

// and this call is the same as the inet_aton() call, above:
antelope.sin_addr.s_addr = inet_addr("10.0.0.1");

See Also

inet_ntop(), inet_pton(), gethostbyname(), gethostbyaddr ()

9.14 inet_ntop(), inet_pton()

Convert IP addresses to human-readable form and back.

Synopsis

#include <arpa/inet.h>

const char *inet_ntop(int af, const void *src,
char *dst, socklen_t size);

int inet_pton(int af, const char *src, void *dst);

Description

These functions are for dealing with human-readable IP addresses and converting them to their binary
representation for use with various functions and system calls. The “n” stands for “network”, and “p”
for “presentation”. Or “text presentation”. But you can think of it as “printable”. “ntop” is “network to
printable”. See?

Sometimes you don’t want to look at a pile of binary numbers when looking at an IP address. You want it
in a nice printable form, like 192.0.2.180, or 2001:db8:8714:3a90: :12. In that case, inet_ntop()
is for you.

inet_ntop() takes the address family in the af parameter (either AF_INET or AF_INET6). The src
parameter should be a pointer to either a struct in_addr or struct in6_addr containing the address
you wish to convert to a string. Finally dst and size are the pointer to the destination string and the
maximum length of that string.

What should the maximum length of the dst string be? What is the maximum length for IPv4 and
IPv6 addresses? Fortunately there are a couple of macros to help you out. The maximum lengths are:
INET_ADDRSTRLEN and INET6_ADDRSTRLEN.

Other times, you might have a string containing an IP address in readable form, and you want to pack it into
a struct sockaddr_in or a struct sockaddr_in6. In that case, the opposite function inet_pton()
is what you’re after.

inet_pton() also takes an address family (either AF_INET or AF_INET6) in the af parameter. The src
parameter is a pointer to a string containing the IP address in printable form. Lastly the dst parameter
points to where the result should be stored, which is probably a struct in_addr or struct in6_addr.

104 Chapter 9. Man Pages
These functions don’t do DNS lookups—you’ll need getaddrinfo() for that.

Return Value
inet_ntop() returns the dst parameter on success, or NULL on failure (and errno is set).

inet_pton() returns 1 on success. It returns -1 if there was an error (errno is set), or 0 if the input isn’t
a valid IP address.

Example

// IPv4 demo of inet_ntop() and inet_pton()

struct sockaddr_in sa;
char str[INET_ADDRSTRLEN];

// store this IP address in sa:
inet_pton(AF_INET, "192.0.2.33", &(sa.sin_addr));

// now get it back and print it
inet_ntop(AF_INET, &(sa.sin_addr), str, INET_ADDRSTRLEN);

printf("%s\n", str); // prints "192.0.2.33"

// IPv6 demo of inet_ntop() and inet_pton()
// (basically the same except with a bunch of 6s thrown around)

struct sockaddr_in6 sa;
char str[INET6_ADDRSTRLEN];

// store this IP address in sa:
inet_pton(AF_INET6, "2001:db8:8714:3a90::12", &(sa.sin6_addr));

// now get it back and print it
inet_ntop(AF_INET6, &(sa.sin6_addr), str, INET6_ADDRSTRLEN);

printf("%s\n", str); // prints "2001:db8:8714:3a90::12"

// Helper function you can use:
//Convert a struct sockaddr address to a string, IPv4 and IPv6:

char *get_ip_str(const struct sockaddr *sa, char *s, size_t maxlen)
{
switch(sa->sa_family) {
case AF_INET:
inet_ntop(AF_INET,
&(((struct sockaddr_in *)sa)->sin_addr), s,
maxlen);
break;

case AF_INET6:
inet_ntop(AF_INETS6,
&(((struct sockaddr_in6 *)sa)->sin6_addr), s,
maxlen);
break;

9.15. listen() 105

default:
strncpy(s, "Unknown AF", maxlen);
return NULL;

}
return s;
}
See Also

getaddrinfo()

9.15 1listen()

Tell a socket to listen for incoming connections

Synopsis

#inc lude <sys/socket.h>

int listen(int s, int backlog);

Description

You can take your socket descriptor (made with the socket () system call) and tell it to listen for incoming
connections. This is what differentiates the servers from the clients, guys.

The backlog parameter can mean a couple different things depending on the system you on, but loosely
it is how many pending connections you can have before the kernel starts rejecting new ones. So as the
new connections come in, you should be quick to accept () them so that the backlog doesn’t fill. Try
setting it to 10 or so, and if your clients start getting “Connection refused” under heavy load, set it higher.

Before calling listen(), your server should call bind() to attach itself to a specific port number. That
port number (on the server’s IP address) will be the one that clients connect to.

Return Value

Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset (&hints, 0, sizeof hints);

hints.ai family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE; // fill in my IP for me

getaddrinfo(NULL, "3490", &hints, &res);

20

21

22

23

24

106 Chapter 9. Man Pages

// make a socket:

sockfd = socket(res->ai_family, res->ai_socktype,
res->ai_protocol);

// bind it to the port we passed in to getaddrinfo():
bind(sockfd, res->ai_addr, res->ai_addrlen);
listen(sockfd, 10); // set sockfd up to be a server socket

// then have an accept() loop down here somewhere

See Also

accept(), bind(), socket()

9.16 perror(), strerror()

Print an error as a human-readable string

Synopsis

#include <stdio.h>
#include <string.h> // for strerror()

void perror(const char *s);
char *strerror(int errnum);

Description

Since so many functions return -1 on error and set the value of the variable errno to be some number, it
would sure be nice if you could easily print that in a form that made sense to you.

Mercifully, perror () does that. If you want more description to be printed before the error, you can point
the parameter s to it (or you can leave s as NULL and nothing additional will be printed).

In a nutshell, this function takes errno values, like ECONNRESET, and prints them nicely, like “Connection
reset by peer.”

The function strerror() is very similar to perror (), except it returns a pointer to the error message
string for a given value (you usually pass in the variable errno).

Return Value

strerror () returns a pointer to the error message string.

Example

int s;
s = socket(PF_INET, SOCK_STREAM, 0);

if (s == -1) { // some error has occurred

9.17. poll() 107

// prints "socket error: " + the error message:
perror("socket error");
}
// similarly:
if (listen(s, 10) == -1) {
// this prints "an error: " + the error message from errno:
printf("an error: %s\n", strerror(errno));
}
See Also
errno

9.17 poll()

Test for events on multiple sockets simultaneously

Synopsis

#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout);

Description

This function is very similar to select () in that they both watch sets of file descriptors for events, such
as incoming data ready to recv(), socket ready to send() data to, out-of-band data ready to recv(),
errors, etc.

The basic idea is that you pass an array of nfds struct pollfds in ufds, along with a timeout in mil-
liseconds (1000 milliseconds in a second). The timeout can be negative if you want to wait forever. If
no event happens on any of the socket descriptors by the timeout, pol11() will return.

Each element in the array of struct pollfds represents one socket descriptor, and contains the following
fields:

struct pollfd {
int fd; // the socket descriptor
short events; // bitmap of events we're interested in
short revents; // after return, bitmap of events that occurred

Y

Before calling poll(), load fd with the socket descriptor (if you set fd to a negative number, this
struct pollfd is ignored and its revents field is set to zero) and then construct the events field by
bitwise-ORing the following macros:

Macro Description
POLLIN Alert me when data is ready to recv() on this socket.
POLLOUT Alert me when I can send () data to this socket without blocking.

POLLPRI Alert me when out-of-band data is ready to recv() on this socket.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

108 Chapter 9. Man Pages

Once the pol1() call returns, the revents field will be constructed as a bitwise-OR of the above fields,
telling you which descriptors actually have had that event occur. Additionally, these other fields might be
present:

Macro Description

POLLERR An error has occurred on this socket.

POLLHUP The remote side of the connection hung up.

POLLNVAL Something was wrong with the socket descriptor fd—maybe it’s uninitialized?

Return Value

Returns the number of elements in the ufds array that have had event occur on them; this can be zero if
the timeout occurred. Also returns -1 on error (and errno will be set accordingly).

Example

int s1, s2;

int rv;

char buf1[256], buf2[256];
struct pollfd ufds[2];

sl socket (PF_INET, SOCK_STREAM, 0);
s2 = socket(PF_INET, SOCK_STREAM, 0);

// pretend we've connected both to a server at this point
//connect(s1, ...)...
//connect(s2, ...)...

// set up the array of file descriptors.

//

// in this example, we want to know when there's normal or
// out-of-band (00B) data ready to be recv()'d...

ufds[0].fd = s1;
ufds[0].events = POLLIN | POLLPRI; // check for normal or 00B

ufds[1].fd = s2;
ufds[1].events = POLLIN; // check for just normal data

// wait for events on the sockets, 3.5 second timeout
rv = poll(ufds, 2, 3500);

if (rv == -1) {
perror("poll"); // error occurred in poll()
} else if (rv == 0) {
printf("Timeout occurred! No data after 3.5 seconds.\n");
} else {
// check for events on s1:
if (ufds[@].revents & POLLIN) {
recv(sl, bufl, sizeof bufl, 0); // receive normal data
}
if (ufds[0].revents & POLLPRI) {
recv(sl, bufl, sizeof bufl, MSG_0O0B); // out-of-band data

// check for events on s2:

42

43

9.18. recv(), recvfrom() 109

if (ufds[1].revents & POLLIN) {
recv(sl, buf2, sizeof buf2, 0);
}

See Also

select()

9.18 recv(), recvfrom()

Receive data on a socket

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

ssize_t recv(int s, void *buf, size_ t len, int flags);
ssize t recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, socklen_t *fromlen);

Description

Once you have a socket up and connected, you can read incoming data from the remote side using the
recv () (for TCP SOCK_STREAM sockets) and recvfrom() (for UDP SOCK_DGRAM sockets).

Both functions take the socket descriptor s, a pointer to the buffer buf, the size (in bytes) of the buffer
len, and a set of flags that control how the functions work.

Additionally, the recvfrom() takes a struct sockaddr*, from that will tell you where the data came
from, and will fill in fromlen with the size of struct sockaddr. (You must also initialize fromlen to
be the size of from or struct sockaddr.)

So what wondrous flags can you pass into this function? Here are some of them, but you should check
your local man pages for more information and what is actually supported on your system. You bitwise-or
these together, or just set flags to 0 if you want it to be a regular vanilla recv().

Macro Description

Receive Out of Band data. This is how to get data that has been sent to you with

b D00 the MSG_00B flag in send(). As the receiving side, you will have had signal
SIGURG raised telling you there is urgent data. In your handler for that signal,
you could call recv () with this MSG_00B flag.

W If you want to call recv() “just for pretend”, you can call it with this flag. This

will tell you what’s waiting in the buffer for when you call recv() “for real”
(i.e. without the MSG_PEEK flag.) It’s like a sneak preview into the next recv ()
call.

Tell recv() to not return until all the data you specified in the len parameter
has been received. It will ignore your wishes in extreme circumstances, however,
like if a signal interrupts the call or if some error occurs or if the remote side
closes the connection, etc. Don’t be mad with it.

MSG_WAITALL

When you call recv(), it will block until there is some data to read. If you want to not block, set the
socket to non-blocking or check with select () or poll() to see if there is incoming data before calling

19

20

21

22

23

24

25

110 Chapter 9. Man Pages

recv() or recvfrom().

Return Value

Returns the number of bytes actually received (which might be less than you requested in the 1en param-

eter), or -1 on error (and errno will be set accordingly).

If the remote side has closed the connection, recv() will return ©. This is the normal method for deter-

mining if the remote side has closed the connection. Normality is good, rebel!

Example

// stream sockets and recv()

struct addrinfo hints, *res;
int sockfd;

char buf[512];

int byte_count;

// get host info, make socket, and connect it

memset (&hints, ©, sizeof hints);

hints.ai family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_STREAM;

getaddrinfo("www.example.com", "3490", &hints, &res);

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
connect(sockfd, res->ai_addr, res->ai_addrlen);

// all right! now that we're connected, we can receive some data!
byte_count = recv(sockfd, buf, sizeof buf, 0);
printf("recv()'d %d bytes of data in buf\n", byte_count);

// datagram sockets and recvfrom()

struct addrinfo hints, *res;
int sockfd;

int byte_count;

socklen_t fromlen;

struct sockaddr_storage addr;
char buf[512];

char ipstr[INET6_ADDRSTRLEN];

// get host info, make socket, bind it to port 4950

memset (&hints, ©, sizeof hints);

hints.ai_family = AF_UNSPEC; // use IPv4 or IPv6, whichever
hints.ai_socktype = SOCK_DGRAM;

hints.ai_flags = AI_PASSIVE;

getaddrinfo(NULL, "4950", &hints, &res);

sockfd = socket(res->ai_family, res->ai_socktype, res->ai protocol);
bind(sockfd, res->ai_addr, res->ai_addrlen);

// no need to accept(), just recvfrom():

fromlen = sizeof addr;
byte_count = recvfrom(sockfd, buf, sizeof buf, 0, &addr, &fromlen);

printf("recv()'d %d bytes of data in buf\n", byte_count);

9.19. select() 111

printf("from IP address %s\n",
inet_ntop(addr.ss_family,
addr.ss_family == AF_INET?
((struct sockaddr_in *)&addr)->sin_addr:
((struct sockaddr_in6 *)&addr)->sin6_addr,
ipstr, sizeof ipstr);

See Also
send(), sendto(), select(), poll(), Blocking

9.19 select()

Check if sockets descriptors are ready to read/write

Synopsis

#include <sys/select.h>

int select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_SET(int fd, fd_set *set);
FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

Description

The select () function gives you a way to simultaneously check multiple sockets to see if they have data
waiting to be recv()d, or if you can send() data to them without blocking, or if some exception has
occurred.

You populate your sets of socket descriptors using the macros, like FD_SET(), above. Once you have
the set, you pass it into the function as one of the following parameters: readfds if you want to know
when any of the sockets in the set is ready to recv() data, writefds if any of the sockets is ready to
send() data to, and/or exceptfds if you need to know when an exception (error) occurs on any of the
sockets. Any or all of these parameters can be NULL if you’re not interested in those types of events. After
select () returns, the values in the sets will be changed to show which are ready for reading or writing,
and which have exceptions.

The first parameter, n is the highest-numbered socket descriptor (they’re just ints, remember?) plus one.

Lastly, the struct timeval, timeout, at the end—this lets you tell select () how long to check these
sets for. It’ll return after the timeout, or when an event occurs, whichever is first. The struct timeval
has two fields: tv_sec is the number of seconds, to which is added tv_usec, the number of microseconds
(1,000,000 microseconds in a second).

The helper macros do the following:

Macro Description

Add fd to the set.

FD_SET(int fd, fd_set *set);

Remove fd from the set.
FD_CLR(int fd, fd_set *set);

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

112 Chapter 9. Man Pages

Macro Description

Return true if fd is in the set.
FD_ISSET(int fd, fd_set *set);

Clear all entries from the set.
FD_ZERO(fd_set *set);

Note for Linux users: Linux’s select () can return “ready-to-read” and then not actually be ready to read,
thus causing the subsequent read() call to block. You can work around this bug by setting 0_NONBLOCK
flag on the receiving socket so it errors with EWOULDBLOCK, then ignoring this error if it occurs. See the
fent1() man page for more info on setting a socket to non-blocking.

Return Value

Returns the number of descriptors in the set on success, 0 if the timeout was reached, or -1 on error (and
errno will be set accordingly). Also, the sets are modified to show which sockets are ready.

Example

int s1, s2, n;

fd_set readfds;

struct timeval tv;

char bufi1[256], buf2[256];

// pretend we've connected both to a server at this point
//s1 = socket(...),;

//s2 = socket(...),;

//connect(s1, ...)...

//connect(s2, ...)...

// clear the set ahead of time
FD_ZERO(&readfds);

// add our descriptors to the set
FD_SET(s1, &readfds);
FD_SET(s2, &readfds);

// since we got s2 second, it's the '"greater", so we use that for
// the n param in select()
n=s2+1;

// wait until either socket has data ready to be recv()d
// (timeout 160.5 secs)

tv.tv_sec = 10;

tv.tv_usec = 500000;

rv = select(n, &readfds, NULL, NULL, &tv);

if (rv == -1) {

perror("select"); // error occurred in select()
} else if (rv == 0) {

printf("Timeout occurred! No data after 10.5 seconds.\n");
} else {

// one or both of the descriptors have data

if (FD_ISSET(s1, &readfds)) {

recv(sl, bufl, sizeof bufi, 0);

}
if (FD_ISSET(s2, é&readfds)) {

40

41

9.20. setsockopt(), getsockopt() 113

recv(s2, buf2, sizeof buf2, 0);

See Also
poll()

9.20 setsockopt(), getsockopt()

Set various options for a socket

Synopsis

#include <sys/types.h>
#inc lude <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval,
socklen_t *optlen);

int setsockopt(int s, int level, int optname, const void *optval,
socklen_t optlen);

Description

Sockets are fairly configurable beasts. In fact, they are so configurable, I’'m not even going to cover it all
here. It’s probably system-dependent anyway. But I will talk about the basics.

Obviously, these functions get and set certain options on a socket. On a Linux box, all the socket infor-
mation is in the man page for socket in section 7. (Type: “man 7 socket” to get all these goodies.)

As for parameters, s is the socket you’re talking about, level should be set to SOL_SOCKET. Then you set
the optname to the name you’re interested in. Again, see your man page for all the options, but here are
some of the most fun ones:

optname Description

Bind this socket to a symbolic device name like etho instead of using

bind() to bind it to an IP address. Type the command ifconfig under

Unix to see the device names.

Allows other sockets to bind() to this port, unless there is an active

listening socket bound to the port already. This enables you to get around

those “Address already in use” error messages when you try to restart your

server after a crash.

Allows UDP datagram (SOCK_DGRAM) sockets to send and receive packets

SO_BROADCAST sent to and from the broadcast address. Does nothing—NOTHING!!—to
TCP stream sockets! Hahaha!

SO_BINDTODEVICE

SO_REUSEADDR

As for the parameter optval, it’s usually a pointer to an int indicating the value in question. For booleans,
zero is false, and non-zero is true. And that’s an absolute fact, unless it’s different on your system. If there
is no parameter to be passed, optval can be NULL.

The final parameter, opt len, should be set to the length of optval, probably sizeof (int), but varies
depending on the option. Note that in the case of getsockopt (), this is a pointer to a socklen_t, and
it specifies the maximum size object that will be stored in optval (to prevent buffer overflows). And
getsockopt () will modify the value of optlen to reflect the number of bytes actually set.

114 Chapter 9. Man Pages

Warning: on some systems (notably Sun and Windows), the option can be a char instead of an int, and
is set to, for example, a character value of '1"' instead of an int value of 1. Again, check your own man
pages for more info with “man setsockopt” and “man 7 socket”!

Return Value

Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

int optval;
int optlen;
char *optval2;

// set SO_REUSEADDR on a socket to true (1):
optval = 1;
setsockopt(sl, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof optval);

// bind a socket to a device name (might not work on all systems):
optval2 = "eth1"; // 4 bytes long, so 4, below:
setsockopt(s2, SOL_SOCKET, SO_BINDTODEVICE, optval2, 4);

// see 1if the SO_BROADCAST flag is set:
getsockopt(s3, SOL_SOCKET, SO_BROADCAST, &optval, &optlen);
if (optval !'= 0) {

print("SO_BROADCAST enabled on s3!\n");

See Also
fent ()

9.21 send(), sendto()

Send data out over a socket

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

ssize_ t send(int s, const void *buf, size_t len, int flags);
ssize_t sendto(int s, const void *buf, size_t len,
int flags, const struct sockaddr *to,
socklen_t tolen);

Description

These functions send data to a socket. Generally speaking, send() is used for TCP SOCK_STREAM con-
nected sockets, and sendto() is used for UDP SOCK_DGRAM unconnected datagram sockets. With the
unconnected sockets, you must specify the destination of a packet each time you send one, and that’s why
the last parameters of sendto() define where the packet is going.

9.21. send(), sendto()

115

With both send() and sendto(), the parameter s is the socket, buf is a pointer to the data you want to
send, len is the number of bytes you want to send, and flags allows you to specify more information
about how the data is to be sent. Set flags to zero if you want it to be “normal” data. Here are some of
the commonly used flags, but check your local send() man pages for more details:

Macro

Description

MSG_00B

MSG_DONTROUTE

MSG_DONTWAIT

MSG_NOSIGNAL

Send as “out of band” data. TCP supports this, and it’s a way to tell the
receiving system that this data has a higher priority than the normal data. The
receiver will receive the signal SIGURG and it can then receive this data
without first receiving all the rest of the normal data in the queue.

Don’t send this data over a router, just keep it local.

If send () would block because outbound traffic is clogged, have it return
EAGAIN. This is like a “enable non-blocking just for this send.” See the
section on blocking for more details.

If you send() to a remote host which is no longer recv()ing, you’ll
typically get the signal SIGPIPE. Adding this flag prevents that signal from
being raised.

Return Value

Returns the number of bytes actually sent, or -1 on error (and errno will be set accordingly). Note that
the number of bytes actually sent might be less than the number you asked it to send! See the section on
handling partial send()s for a helper function to get around this.

Also, if the socket has been closed by either side, the process calling send () will get the signal SIGPIPE.
(Unless send() was called with the MSG_NOSIGNAL flag.)

Example
int spatula_count 3490;
char *secret_message = "The Cheese is in The Toaster";

int temp;

//dest = ...

int stream_socket, dgram_socket;
struct sockaddr_in dest;

// first with TCP stream sockets:

// assume sockets are made and connected
//stream_socket = socket(...
//connect(stream_socket,

// convert to network byte order

temp = htonl(spatula_count);

// send data normally:

send(stream_socket, &temp, sizeof temp, 0);

// send secret message out of band:
send(stream_socket, secret_message, strlen(secret_message)+1,
MSG_00B) ;

// now with UDP datagram sockets:

//getaddrinfo(...

// assume "dest" holds the address of the destination
//dgram_socket = socket(...

28

2

>

30

116 Chapter 9. Man Pages

// send secret message normally:
sendto(dgram_socket, secret_message, strlen(secret_message)+1, O,
(struct sockaddr*)&dest, sizeof dest);

See Also

recv(), recvfrom()

9.22 shutdown()

Stop further sends and receives on a socket

Synopsis

#include <sys/socket.h>

int shutdown(int s, int how);

Description

That’s it! I’ve had it! No more send()s are allowed on this socket, but I still want to recv() data on it!
Or vice-versa! How can I do this?

When you close() a socket descriptor, it closes both sides of the socket for reading and writing, and frees
the socket descriptor. If you just want to close one side or the other, you can use this shutdown() call.

As for parameters, s is obviously the socket you want to perform this action on, and what action that is
can be specified with the how parameter. how can be SHUT_RD to prevent further recv()s, SHUT_WR to
prohibit further send()s, or SHUT_RDWR to do both.

Note that shutdown () doesn’t free up the socket descriptor, so you still have to eventually close() the
socket even if it has been fully shut down.

This is a rarely used system call.

Return Value

Returns zero on success, or -1 on error (and errno will be set accordingly).

Example

int s = socket(PF_INET, SOCK_STREAM, 0);
// ...do some send()s and stuff in here...

// and now that we're done, don't allow any more sends()s:
shutdown(s, SHUT_WR);

See Also

close()

9.23. socket() 117

9.23 socket()

Allocate a socket descriptor

Synopsis

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Description

Returns a new socket descriptor that you can use to do sockety things with. This is generally the first call
in the whopping process of writing a socket program, and you can use the result for subsequent calls to
listen(), bind(), accept(), or a variety of other functions.

In usual usage, you get the values for these parameters from a call to getaddrinfo(), as shown in the
example below. But you can fill them in by hand if you really want to.

Parameter Description

domain domain describes what kind of socket you’re interested in. This can, believe me, be
a wide variety of things, but since this is a socket guide, it’s going to be PF_INET for
IPv4, and PF_INET6 for IPv6.

type Also, the type parameter can be a number of things, but you’ll probably be setting it
to either SOCK_STREAM for reliable TCP sockets (send(), recv()) or SOCK_DGRAM
for unreliable fast UDP sockets (sendto(), recvfrom()). (Another interesting
socket type is SOCK_RAW which can be used to construct packets by hand. It’s pretty
cool.)

protocol Finally, the protocol parameter tells which protocol to use with a certain socket
type. Like I’ve already said, for instance, SOCK_STREAM uses TCP. Fortunately for
you, when using SOCK_STREAM or SOCK_DGRAM, you can just set the protocol to 0,
and it’ll use the proper protocol automatically. Otherwise, you can use
getprotobyname () to look up the proper protocol number.

Return Value

The new socket descriptor to be used in subsequent calls, or -1 on error (and errno will be set accord-
ingly).

Example

struct addrinfo hints, *res;
int sockfd;

// first, load up address structs with getaddrinfo():

memset (&hints, 0, sizeof hints);

hints.ai_family = AF_UNSPEC; // AF_INET, AF_INET6, or AF_UNSPEC
hints.ai_socktype = SOCK_STREAM; // SOCK _STREAM or SOCK_DGRAM

getaddrinfo("www.example.com", "3490", &hints, &res);

// make a socket using the information gleaned from getaddrinfo():
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

118 Chapter 9. Man Pages

See Also

accept(), bind(), getaddrinfo(), listen()

9.24 struct sockaddr and pals

Structures for handling internet addresses

Synopsis

#include <netinet/in.h>

// All pointers to socket address structures are often cast to
// pointers to this type before use in various functions and system
// calls:

struct sockaddr {

unsigned short sa_family; // address family, AF_Xxxx
char sa_data[14]; // 14 bytes of protocol address

iy

// IPv4 AF_INET sockets:

struct sockaddr_in {

short sin_family; // e.g. AF_INET, AF_INET6
unsigned short sin_port; // e.g. htons(3490)

struct in_addr sin_addr; // see struct in_addr, below
char sin_zero[8]; // zero this if you want to

}
struct in_addr {
unsigned long s_addr; // load with inet_pton()
}
// IPv6 AF_INET6 sockets:

struct sockaddr_in6 {

u_int16_t sin6_family; // address family, AF_INET6
u_int16_t sin6_port; // port number, network order
u_int32_t sin6_flowinfo; // IPv6é flow information
struct in6_addr sin6_addr; // IPv6 address

u_int32_t sin6_scope_id; // Scope ID

};

struct in6_addr {
unsigned char s6_addr[16]; // load with inet_pton()

};

// General socket address holding structure, big enough to hold
// either struct sockaddr_in or struct sockaddr_in6 data:

struct sockaddr_storage {

9.24. struct sockaddr and pals 119

sa_family_t ss_family; // address family

// all this is padding, implementation specific, ignore 1it:

char __Ss_padl[_SS_PAD1SIZE];
int64_t __ss_align;
char __Ss_pad2[_SS_PAD2SIZE];
};
Description

These are the basic structures for all syscalls and functions that deal with internet addresses. Often you’ll
use getaddrinfo() to fill these structures out, and then will read them when you have to.

In memory, the struct sockaddr_in and struct sockaddr_in6 share the same beginning structure as
struct sockaddr, and you can freely cast the pointer of one type to the other without any harm, except
the possible end of the universe.

Just kidding on that end-of-the-universe thing...if the universe does end when you casta struct sockaddr_in*
to a struct sockaddr*, I promise you it’s pure coincidence and you shouldn’t even worry about it.

So, with that in mind, remember that whenever a function says it takes a struct sockaddr* you can cast
your struct sockaddr_in*, struct sockaddr_in6*, or struct sockaddr_storage* to that type
with ease and safety.

struct sockaddr_in is the structure used with IPv4 addresses (e.g. “192.0.2.10”). It holds an address
family (AF_INET), a port in sin_port, and an IPv4 address in sin_addr.

There’s also this sin_zero field in struct sockaddr_in which some people claim must be set to zero.
Other people don’t claim anything about it (the Linux documentation doesn’t even mention it at all), and
setting it to zero doesn’t seem to be actually necessary. So, if you feel like it, set it to zero using memset ().

Now, that struct in_addr is a weird beast on different systems. Sometimes it’s a crazy union with
all kinds of #defines and other nonsense. But what you should do is only use the s_addr field in this
structure, because many systems only implement that one.

struct sockaddr_in6 and struct in6_addr are very similar, except they’re used for IPv6.

struct sockaddr_storage is a struct you can pass to accept() or recvfrom() when you’re trying
to write IP version-agnostic code and you don’t know if the new address is going to be IPv4 or IPv6.
The struct sockaddr_storage structure is large enough to hold both types, unlike the original small
struct sockaddr.

Example

// IPv4:

struct sockaddr_in ip4addr;
int s;

ip4addr.sin_family = AF_INET;
ip4addr.sin_port = htons(3490);
inet_pton(AF_INET, "10.0.0.1", &ipdaddr.sin_addr);

s = socket(PF_INET, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)&ip4addr, sizeof ip4addr);

// IPV6:

struct sockaddr_in6 ip6addr;

120 Chapter 9. Man Pages

int s;

ip6addr.sin6_family = AF_INET6;
ip6addr.sin6_port = htons(4950);
inet_pton(AF_INET6, "2001:db8:8714:3a90::12", &ip6addr.sin6_addr);

s = socket(PF_INET6, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)&ip6addr, sizeof ip6addr);

See Also

accept(), bind(), connect(), inet_aton(), inet_ntoa()

Chapter 10

More References

You’ve come this far, and now you’re screaming for more! Where else can you go to learn more about all
this stuff?

10.1 Books

For old-school actual hold-it-in-your-hand pulp paper books, try some of the following excellent books.
These redirect to affiliate links with a popular bookseller, giving me nice kickbacks. If you’re merely
feeling generous, you can paypal a donation to beej@beej.us. :-)

Unix Network Programming, volumes 1-2 by W. Richard Stevens. Published by Addison-Wesley Pro-
fessional and Prentice Hall. ISBNs for volumes 1-2: 978-0131411555', 978-0130810816°.

Internetworking with TCP/IP, volume I by Douglas E. Comer. Published by Pearson. ISBN 978-
0136085300°.

TCP/IP Illustrated, volumes 1-3 by W. Richard Stevens and Gary R. Wright. Published by Addison
Wesley. ISBNs for volumes 1, 2, and 3 (and a 3-volume set): 978-0201633467*, 978-0201633542°, 978-
0201634952°, (978-02017763177).

TCP/IP Network Administration by Craig Hunt. Published by O’Reilly & Associates, Inc. ISBN 978-
0596002978°.

Advanced Programming in the UNIX Environment by W. Richard Stevens. Published by Addison
Wesley. ISBN 978-0321637734°.

10.2 Web References

On the web:

BSD Sockets: A Quick And Dirty Primer!® (Unix system programming info, too!)
The Unix Socket FAQ!!

TCP/IP FAQ"

Thttps://beej.us/guide/url/unixnet1
Zhttps://beej.us/guide/url/unixnet2
3https://beej.us/guide/url/intertcpl
“https://beej.us/guide/url/tcpil
Shttps://beej.us/guide/url/tcpi2
bhttps://beej.us/guide/url/tcpi3
7https://beej.us/guide/url/tcpil23
8https://beej.us/guide/url/tcpna
https://beej.us/guide/url/advunix
10https://cis.temple.edu/~giorgio/old/cis307s96/readings/docs/sockets.htm]
Uhttps://developerweb.net/?f=70
2http://www.faqs.org/faqs/internet/tcp-ip/tcp-ip-fag/part1/

121

mailto:beej@beej.us
https://beej.us/guide/url/unixnet1
https://beej.us/guide/url/unixnet2
https://beej.us/guide/url/intertcp1
https://beej.us/guide/url/intertcp1
https://beej.us/guide/url/tcpi1
https://beej.us/guide/url/tcpi2
https://beej.us/guide/url/tcpi3
https://beej.us/guide/url/tcpi3
https://beej.us/guide/url/tcpi123
https://beej.us/guide/url/tcpna
https://beej.us/guide/url/tcpna
https://beej.us/guide/url/advunix
https://cis.temple.edu/~giorgio/old/cis307s96/readings/docs/sockets.html
https://developerweb.net/?f=70
http://www.faqs.org/faqs/internet/tcp-ip/tcp-ip-faq/part1/

122 Chapter 10. More References

The Winsock FAQ™

And here are some relevant Wikipedia pages:
Berkeley Sockets'

Internet Protocol (IP)"

Transmission Control Protocol (TCP)'®
User Datagram Protocol (UDP)!’

8

Client-Server!

Serialization'® (packing and unpacking data)

10.3 RFCs

RFCs?*—the real dirt! These are documents that describe assigned numbers, programming APIs, and
protocols that are used on the Internet. I’ve included links to a few of them here for your enjoyment, so
grab a bucket of popcorn and put on your thinking cap:

RFC 12! —The First RFC; this gives you an idea of what the “Internet” was like just as it was coming to
life, and an insight into how it was being designed from the ground up. (This RFC is completely obsolete,
obviously!)

RFC 768%2 —The User Datagram Protocol (UDP)

RFC 791?° —The Internet Protocol (IP)

RFC 793%* —The Transmission Control Protocol (TCP)
RFC 854%° —The Telnet Protocol

RFC 959°° —File Transfer Protocol (FTP)

RFC 1350°7 —The Trivial File Transfer Protocol (TFTP)
RFC 1459?® —Internet Relay Chat Protocol (IRC)

RFC 1918%° —Address Allocation for Private Internets
RFC 21313 —Dynamic Host Configuration Protocol (DHCP)
RFC 91103 —Hypertext Transfer Protocol (HTTP)
RFC 28212 —Simple Mail Transfer Protocol (SMTP)
RFC 3330 —Special-Use IPv4 Addresses

13https://tangentsoft.net/wskfaq/
4https://en.wikipedia.org/wiki/Berkeley_sockets
15https://en.wikipedia.org/wiki/Internet_Protocol
16https://en.wikipedia.org/wiki/Transmission_Control_Protocol
7https://en.wikipedia.org/wiki/User_Datagram_Protocol
18https://en.wikipedia.org/wiki/Client-server
https://en.wikipedia.org/wiki/Serialization
2Ohttps://www.rfc-editor.org/
21https://tools.ietf.org/html/rfcl
22https://tools.ietf.org/html/rfc768
Z3https://tools.ietf.org/html/rfc791
24https://tools.ietf.org/html/rfc793
ZShttps://tools.ietf.org/html/rfc854
Zhttps://tools.ietf.org/html/rfc959
27https://tools.ietf.org/html/rfc1350
28https://tools.ietf.org/html/rfc1459
2https://tools.ietf.org/html/rfc1918
3Ohttps://tools.ietf.org/html/rfc2131
3https://tools.ietf.org/html/rfc9110
3https://tools.ietf.org/html/rfc2821
3https://tools.ietf.org/html/rfc3330

https://tangentsoft.net/wskfaq/
https://en.wikipedia.org/wiki/Berkeley_sockets
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Client-server
https://en.wikipedia.org/wiki/Serialization
https://www.rfc-editor.org/
https://tools.ietf.org/html/rfc1
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc854
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc1350
https://tools.ietf.org/html/rfc1459
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc9110
https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc3330

10.3. RFCs 123

RFC 3493 —Basic Socket Interface Extensions for IPv6

RFC 3542%> —Advanced Sockets Application Program Interface (API) for IPv6
RFC 3849 —IPv6 Address Prefix Reserved for Documentation

RFC 3920° —Extensible Messaging and Presence Protocol (XMPP)

RFC 3977°® —Network News Transfer Protocol (NNTP)

RFC 4193% —Unique Local IPv6 Unicast Addresses

RFC 4506*° —External Data Representation Standard (XDR)

The IETF has a nice online tool for searching and browsing RFCs*'.

34https://tools.ietf.org/html/rfc3493
FShttps://tools.ietf.org/html/rfc3542
3https://tools.ietf.org/html/rfc3849
37https://tools.ietf.org/html/rfc3920
3Bhttps://tools.ietf.org/html/rfc3977
3https://tools.ietf.org/html/rfc4193
“Ohttps://tools.ietf.org/html/rfc4506
“lhttps://tools.ietf.org/rfc/

https://tools.ietf.org/html/rfc3493
https://tools.ietf.org/html/rfc3542
https://tools.ietf.org/html/rfc3849
https://tools.ietf.org/html/rfc3920
https://tools.ietf.org/html/rfc3977
https://tools.ietf.org/html/rfc4193
https://tools.ietf.org/html/rfc4506
https://tools.ietf.org/rfc/

124 Chapter 10. More References

Index

10.Xx.X.X%, 18
192.168.x.X, 18
255,255, 255,255, 75, 102

accept () function, 28, 85
Address already in use, 26, 79
AF_INET macro, 15, 25, 82
AF_INET6 macro, 15

Bapper, 77

bind() function, 25, 27, 79, 87
implicit, 27

Blah blah blah, 9

Blocking, 30, 45

Broadcast, 75

BSD, 2

Byte ordering, 13, 16, 61, 101

Client

datagram, 42-43

stream, 38—40
Client/Server, 35-44
close() function, 31, 90
closesocket () function, 3, 32, 90
Compilers

GCC, 1
Compression, 81
connect(), 25

on datagram sockets, 89
connect () function, 7, 27, 88

on datagram sockets, 31, 43
Connection refused, 40
CreateProcess() function, 3, 83
CreateThread() function, 3
CSocket class, 3
Cygwin, 2

Data enacapsulation
header, 9

Data encapsulation, 8, 60
footer, 9

Datagram sockets, 7—8

DHCP, 122

Donkeys, 60

EAGAIN macro, 45, 115
Emailing Beej, 4
Encryption, 81

EPIPE macro, 90
errno variable, 99, 106

Ethernet, 9
EWOULDBLOCK macro, 45
Excalibur, 75

F_SETFL macro, 100
fcnt1() function, 45, 86, 100
FD_CLR() macro, 53, 111
FD_ISSET() macro, 53, 112
FD_SET() macro, 53, 111
FD_ZERO() macro, 53, 112
File descriptor, 7
Firewall, 18, 77, 83

poking holes in, 83
fork() function, 3, 35, 83
freeaddrinfo() function, 90
FTP, 122

gai_strerror () function, 90

getaddrinfo() function, 15, 19, 21, 32, 90

gethostbyaddr () function, 32, 94
gethostbyname () function, 94, 94
gethostname () function, 32, 94
getnameinfo() function, 19, 32, 97
getpeername () function, 32, 98
getprotobyname() function, 117
getsockopt () function, 113
gettimeofday () function, 55

Goat, 79

goto statement, 80

Header files, 79

herror () function, 95
hstrerror() function, 95
htonl() function, 14, 100
htons() function, 14, 16, 61, 100
HTTP protocol, 8, 122

ICMP, 79

IEEE-754, 62

illumos, 2

INADDR_BROADCAST macro, 75
inet_addr () function, 17, 102
inet_aton() function, 17, 102
inet_ntoa() function, 17, 102
inet_ntop() function, 17, 32, 103
inet_pton() function, 17, 103
ioct1() function, 83

IP, 8,9, 122

IP address, 11, 17, 25, 31, 32
ip route command, 79

125

126 INDEX

IPv4, 11 Security, 82
IPv6, 11, 16, 18, 19 select () function, 3, 53-59, 79, 80, 111
IRC, 61, 122 with listen(), 55
ISO/0S], 9 send() function, 7, 9, 30, 114
sendall() function, 59-60, 73
Layered network model, 9 sendto() function, 9, 114
Linux, 2 Serialization, 60~73
listen() function, 25, 28, 105 Server
backlog, 28 datagram, 40—42
with select(), 55 stream. 35-38
localhost, 79 setsockopt () function, 26, 75, 79, 83, 113
Loopback device, 79 SHUT RD macro. 116

SHUT_RDWR macro, 116
SHUT_WR macro, 116
shutdown() function, 31, 116
sigaction() function, 38, 80
SIGIO signal, 100

SIGPIPE macro, 90, 115
SIGURG macro, 109, 115
SMTP, 122
SO_BINDTODEVICE macro, 113

man pages, 85

Mirroring the Guide, 4
MSG_DONTROUTE macro, 115
MSG_DONTWAIT macro, 115
MSG_NOSIGNAL macro, 115
MSG_00B macro, 109, 115
MSG_PEEK macro, 109
MSG_WAITALL macro, 109

MTU, 82
SO0_BROADCAST macro, 75, 113
NAT, 18 SO_RCVTIMEO macro, 83
netstat command, 79 SO_REUSEADDR macro, 26, 79, 113
NNTP, 123 SO_SNDTIMEO macro, 83
Non-blocking sockets, 45, 115 SOCK_DGRAM macro, 7, 8, 30, 109, 117
ntohl() function, 14, 100 SOCK_RAW macro, 79, 117
ntohs() function, 14, 100 SOCK_STREAM macro, 7, 109, 117
Socket descriptor, 7, 14
0_ASYNC macro, 100 socket () function, 7, 24, 117
0_NONBLOCK macro, 59, 86, 100, 112 SOL_SOCKET macro, 113
OpenSSL, 81 Solaris, 1, 114
Out-of-band data, 109, 115 SSL, 81

Stream sockets, 7

strerror () function, 99, 106

struct addrinfo type, 14

struct hostent type, 95

struct in6_addr type, 118

struct in_addr type, 118

struct pollfd type, 46, 107

struct sockaddr type, 15, 31, 109, 118
struct sockaddr_in type, 118
struct sockaddr_iné6 type, 118
struct sockaddr_storage type, 118

Packet sniffer, 83

Pat, 77

perror () function, 99, 106
PF_INET macro, 82, 117
ping command, 79

poll(), 46-53

poll() function, 45, 59, 107
Port, 25, 26, 31

Private network, 18
Promiscuous mode, 83

Raw sockets, 7, 79 struct timeval type, 53-55, 111
read() function, 7 SunOs, 1, 114
recv() function, 7, 30, 109
timeout, 80 TCP, 8, 122
recvfrom() function, 31, 109 telnet, 7, 122
recvtimeout () function, 81 TFTP, 9,122
References Timeout
books, 121 setting, 83
FRFCs, 122-123 Translating the Guide, 4
web-based, 121-122 TRON, 27
RFCs, 122-123
route command, 79 UDP, 8, 9, 75, 122

SA_RESTART macro, 80 Vint Cerf, 11

INDEX 127

Windows, 2, 32, 79, 90, 114
Windows Subsystem For Linux, 2
Winsock, 2, 32

write() function, 7
WSACleanup () function, 3
WSAStartup() function, 3

WSL, 2

XDR, 73, 123
XMPP, 123

Zombie process, 38

	Intro
	Audience
	Platform and Compiler
	Official Homepage and Books For Sale
	Note for Solaris/SunOS/illumos Programmers
	Note for Windows Programmers
	Email Policy
	Mirroring
	Note for Translators
	Copyright, Distribution, and Legal
	Dedication
	Publishing Information

	What is a socket?
	Two Types of Internet Sockets
	Low level Nonsense and Network Theory

	IP Addresses, structs, and Data Munging
	IP Addresses, versions 4 and 6
	Subnets
	Port Numbers

	Byte Order
	structs
	IP Addresses, Part Deux
	Private (Or Disconnected) Networks

	Jumping from IPv4 to IPv6
	System Calls or Bust
	getaddrinfo()—Prepare to launch!
	socket()—Get the File Descriptor!
	bind()—What port am I on?
	connect()—Hey, you!
	listen()—Will somebody please call me?
	accept()—``Thank you for calling port 3490.''
	send() and recv()—Talk to me, baby!
	sendto() and recvfrom()—Talk to me, DGRAM-style
	close() and shutdown()—Get outta my face!
	getpeername()—Who are you?
	gethostname()—Who am I?

	Client-Server Background
	A Simple Stream Server
	A Simple Stream Client
	Datagram Sockets

	Slightly Advanced Techniques
	Blocking
	poll()—Synchronous I/O Multiplexing
	select()—Synchronous I/O Multiplexing, Old School
	Handling Partial send()s
	Serialization—How to Pack Data
	Son of Data Encapsulation
	Broadcast Packets—Hello, World!

	Common Questions
	Man Pages
	accept()
	bind()
	connect()
	close()
	getaddrinfo(), freeaddrinfo(), gai_strerror()
	gethostname()
	gethostbyname(), gethostbyaddr()
	getnameinfo()
	getpeername()
	errno
	fcntl()
	htons(), htonl(), ntohs(), ntohl()
	inet_ntoa(), inet_aton(), inet_addr
	inet_ntop(), inet_pton()
	listen()
	perror(), strerror()
	poll()
	recv(), recvfrom()
	select()
	setsockopt(), getsockopt()
	send(), sendto()
	shutdown()
	socket()
	struct sockaddr and pals

	More References
	Books
	Web References
	RFCs

